Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776397

ABSTRACT

BCMA-targeting CAR-T cells used in multiple myeloma (MM) are rapidly becoming a mainstay in the treatment of relapsed/refractory (RR) disease, and CAR-T cell expansion post-infusion has been shown to inform depth and duration of response, but measuring this process remains investigational. This multicenter study describes the kinetics and prognostic impact of absolute lymphocyte count (ALC) in the first 15 days after CAR-T infusion in 156 relapsed MM patients treated with the BCMA-targeting agents cilta-cel and ide-cel. Patients with higher maximum ALC (ALCmax) had better depth of response, progression-free survival (PFS), and duration of response (DoR). Patients with ALCmax >1.0 x103/uL had a superior PFS (30.5 versus 6 months, p <0.001) compared to those ≤1.0x103/uL, while patients with ALCmax ≤0.5 x103/uL represent a high-risk group with early disease progression and short PFS (HR 3.4, 95 CI: 2 -5.8, P <0.001). In multivariate analysis, ALCmax >1.0 x103/uL and non-paraskeletal extramedullary disease were the only independent predictors of PFS and DoR after accounting for ISS staging, age, CAR-T product, high-risk cytogenetics and number of previous lines. Moreover, our flow cytometry data suggests that ALC is a surrogate for BCMA CAR-T expansion and can be used as an accessible prognostic marker. We report for the first time the association of ALC after BCMA CAR-T infusion with clinical outcomes and its utility in predicting response in RRMM patients.

2.
Nat Commun ; 15(1): 363, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191471

ABSTRACT

In the complex tumor microenvironment (TME), mesenchymal cells are key players, yet their specific roles in prostate cancer (PCa) progression remain to be fully deciphered. This study employs single-cell RNA sequencing to delineate molecular changes in tumor stroma that influence PCa progression and metastasis. Analyzing mesenchymal cells from four genetically engineered mouse models (GEMMs) and correlating these findings with human tumors, we identify eight stromal cell populations with distinct transcriptional identities consistent across both species. Notably, stromal signatures in advanced mouse disease reflect those in human bone metastases, highlighting periostin's role in invasion and differentiation. From these insights, we derive a gene signature that predicts metastatic progression in localized disease beyond traditional Gleason scores. Our results illuminate the critical influence of stromal dynamics on PCa progression, suggesting new prognostic tools and therapeutic targets.


Subject(s)
Mesenchymal Stem Cells , Prostatic Neoplasms , Humans , Male , Animals , Mice , Prostatic Neoplasms/genetics , Prostate , Stromal Cells , Cell Differentiation , Tumor Microenvironment/genetics
3.
Blood ; 142(26): 2282-2295, 2023 12 28.
Article in English | MEDLINE | ID: mdl-37774374

ABSTRACT

ABSTRACT: The spatial anatomy of hematopoiesis in the bone marrow (BM) has been extensively studied in mice and other preclinical models, but technical challenges have precluded a commensurate exploration in humans. Institutional pathology archives contain thousands of paraffinized BM core biopsy tissue specimens, providing a rich resource for studying the intact human BM topography in a variety of physiologic states. Thus, we developed an end-to-end pipeline involving multiparameter whole tissue staining, in situ imaging at single-cell resolution, and artificial intelligence-based digital whole slide image analysis and then applied it to a cohort of disease-free samples to survey alterations in the hematopoietic topography associated with aging. Our data indicate heterogeneity in marrow adipose tissue (MAT) content within each age group and an inverse correlation between MAT content and proportions of early myeloid and erythroid precursors, irrespective of age. We identify consistent endosteal and perivascular positioning of hematopoietic stem and progenitor cells (HSPCs) with medullary localization of more differentiated elements and, importantly, uncover new evidence of aging-associated changes in cellular and vascular morphologies, microarchitectural alterations suggestive of foci with increased lymphocytes, and diminution of a potentially active megakaryocytic niche. Overall, our findings suggest that there is topographic remodeling of human hematopoiesis associated with aging. More generally, we demonstrate the potential to deeply unravel the spatial biology of normal and pathologic human BM states using intact archival tissue specimens.


Subject(s)
Artificial Intelligence , Hematopoietic Stem Cells , Humans , Mice , Animals , Hematopoietic Stem Cells/pathology , Bone Marrow/pathology , Hematopoiesis/physiology , Aging
4.
bioRxiv ; 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37034687

ABSTRACT

Alterations in tumor stroma influence prostate cancer progression and metastatic potential. However, the molecular underpinnings of this stromal-epithelial crosstalk are largely unknown. Here, we compare mesenchymal cells from four genetically engineered mouse models (GEMMs) of prostate cancer representing different stages of the disease to their wild-type (WT) counterparts by single-cell RNA sequencing (scRNA-seq) and, ultimately, to human tumors with comparable genotypes. We identified 8 transcriptionally and functionally distinct stromal populations responsible for common and GEMM-specific transcriptional programs. We show that stromal responses are conserved in mouse models and human prostate cancers with the same genomic alterations. We noted striking similarities between the transcriptional profiles of the stroma of murine models of advanced disease and those of of human prostate cancer bone metastases. These profiles were then used to build a robust gene signature that can predict metastatic progression in prostate cancer patients with localized disease and is also associated with progression-free survival independent of Gleason score. Taken together, this offers new evidence that stromal microenvironment mediates prostate cancer progression, further identifying tissue-based biomarkers and potential therapeutic targets of aggressive and metastatic disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...