Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 36(18): 4897-4907, 2020 May 12.
Article in English | MEDLINE | ID: mdl-32338912

ABSTRACT

Self-assembled monolayers (SAMs) fall generally into two broad categories: those that are covalently bound either to the surface or to each other and those that rely on weaker forces such as hydrogen bonding or van der Waals forces. The engineering of the structure of SAMs formed from weaker forces is an exciting and complex field that often utilizes long alkane substituents bound to core moieties. The core provides the unique optical, electronic, or catalytic property desired, while the interdigitation of the alkane chains provides the means for creating well-regulated patterns of cores on the substrate. This design technique sometimes fails because some of the alkane substituents remain extended into solution rather than become interdigitated on the substrate. One contributor to this is steric hindrance between elements of the core and of the alkane chain. It is shown that the use of an alkyne linker between the core and the alkane chain can, in the case of meso-substituted porphyrins, significantly reduce this steric barrier and allow more stable and predictable surface structures to form. In particular, 5,15-bis(1-octynyl)porphyrin and 5,15-bis(1-tetradecynyl)porphyrin are shown to form significantly more stable SAMs than their alkane-linked counterparts. Scanning tunneling microscopy is used to provide detailed surface structures. Temperature and solution concentration dependence of the surface coverage is also reported. Density functional theory (DFT) is used to determine the energetic effects associated with alkane substitution at both the meso and ß positions and the beneficial energetic effects of the alkyne linker.

2.
ACS Appl Mater Interfaces ; 11(12): 11976-11987, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30835431

ABSTRACT

The Au(I) complexes CF3AuCNMe (1a) and CF3AuCN tBu (1b) were investigated as Au(I) precursors for focused electron beam-induced deposition (FEBID) of metallic gold. Both 1a and 1b are sufficiently volatile for sublimation at 125 ± 1 mTorr in the temperature range of roughly 40-50 °C. Electron impact mass spectra of 1a-b show gold-containing ions resulting from fragmenting the CF3 group and the CNR ligand, whereas in negative chemical ionization of 1a-b, the major fragment results from dealkylation of the CNR ligand. Steady-state depositions from 1a in an Auger spectrometer produce deposits with a similar gold content to the commercial precursor Me2Au(acac) (3) deposited under the same conditions, while the gold content from 1b is less. These results enable us to suggest the likely fate of the CF3 and CNR ligands during FEBID.

3.
Appl Phys Lett ; 112(9): 092401, 2018 Feb 26.
Article in English | MEDLINE | ID: mdl-29531389

ABSTRACT

AC electric fields were utilized in the growth of individual high-aspect ratio cobalt nanowires from simple salt solutions using the Directed Electrochemical Nanowire Assembly method. Nanowire diameters were tuned from the submicron scale to 40 nm by adjusting the AC voltage frequency and the growth solution concentration. The structural properties of the nanowires, including shape and crystallinity, were identified using electron microscopy. Hysteresis loops obtained along different directions of an individual nanowire using vibrating sample magnetometry showed that the magnetocrystalline anisotropy energy has the same order of magnitude as the shape anisotropy energy. Additionally, the saturation magnetization of an individual cobalt nanowire was estimated to be close to the bulk single crystal value. A small cobalt nanowire segment was grown from a conductive atomic force microscope cantilever tip that was utilized in magnetic force microscopy (MFM) imaging. The fabricated MFM tip provided moderate quality magnetic images of an iron-cobalt thin-film sample.

4.
Phys Chem Chem Phys ; 20(11): 7862-7874, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29509195

ABSTRACT

Electron-induced surface reactions of (η5-C5H5)Fe(CO)2Mn(CO)5 were explored in situ under ultra-high vacuum conditions using X-ray photoelectron spectroscopy and mass spectrometry. The initial step involves electron-stimulated decomposition of adsorbed (η5-C5H5)Fe(CO)2Mn(CO)5 molecules, accompanied by the desorption of an average of five CO ligands. A comparison with recent gas phase studies suggests that this precursor decomposition step occurs by a dissociative ionization (DI) process. Further electron irradiation decomposes the residual CO groups and (η5-C5H5, Cp) ligand, in the absence of any ligand desorption. The decomposition of CO ligands leads to Mn oxidation, while electron stimulated Cp decomposition causes all of the associated carbon atoms to be retained in the deposit. The lack of any Fe oxidation is ascribed to either the presence of a protective carbonaceous matrix around the Fe atoms created by the decomposition of the Cp ligand, or to desorption of both CO ligands bound to Fe in the initial decomposition step. The selective oxidation of Mn in the absence of any Fe oxidation suggests that the fate of metal atoms in mixed-metal precursors for focused electron beam induced deposition (FEBID) will be sensitive to the nature and number of ligands in the immediate coordination sphere. In related studies, the composition of deposits created from (η5-C5H5)Fe(CO)2Mn(CO)5 under steady state deposition conditions, representative of those used to create nanostructures in electron microscopes, were measured and found to be qualitatively consistent with predictions from the UHV surface science studies.

5.
Phys Chem Chem Phys ; 20(8): 5644-5656, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29412202

ABSTRACT

The production of alloyed nanostructures presents a unique problem in focused electron beam induced deposition (FEBID). Deposition of such structures has historically involved the mixing of two or more precursor gases in situ or via multiple channel gas injection systems, thereby making the production of precise, reproducible alloy compositions difficult. Promising recent efforts to address this problem have involved the use of multi-centred, heterometallic FEBID precursor species. In this vein, we present here a study of low-energy electron interactions with cyclopentadienyl iron dicarbonyl manganese pentacarbonyl ((η5-Cp)Fe(CO)2Mn(CO)5), a bimetallic species with a polyhapto ligand (Cp) and seven terminal carbonyl ligands. Gas phase studies and coupled cluster calculations of observed low-energy electron-induced reactions were conducted in order to predict the performance of this precursor in FEBID. In dissociative electron attachment, we find single CO loss and cleavage of the Fe-Mn bond, leading to the formation of [Mn(CO)5]-, to be the two dominant channels. Contributions through further CO loss from the intact core and the formation of [Mn(CO)4]- are minor channels. In dissociative ionization (DI), the fragmentation is significantly more extensive and the DI spectra are dominated by fragments formed through the loss of 5 and 6 CO ligands, and fragments formed through cleavage of the Fe-Mn bond accompanied by substantial CO loss. The gas phase fragmentation channels observed are discussed in relation to the underlying processes and their energetics, and in context to related surface studies and the likely performance of this precursor in FEBID.

6.
Beilstein J Nanotechnol ; 8: 2410-2424, 2017.
Article in English | MEDLINE | ID: mdl-29234576

ABSTRACT

The ability of electrons and atomic hydrogen (AH) to remove residual chlorine from PtCl2 deposits created from cis-Pt(CO)2Cl2 by focused electron beam induced deposition (FEBID) is evaluated. Auger electron spectroscopy (AES) and energy-dispersive X-ray spectroscopy (EDS) measurements as well as thermodynamics calculations support the idea that electrons can remove chlorine from PtCl2 structures via an electron-stimulated desorption (ESD) process. It was found that the effectiveness of electrons to purify deposits greater than a few nanometers in height is compromised by the limited escape depth of the chloride ions generated in the purification step. In contrast, chlorine atoms can be efficiently and completely removed from PtCl2 deposits using AH, regardless of the thickness of the deposit. Although AH was found to be extremely effective at chemically purifying PtCl2 deposits, its viability as a FEBID purification strategy is compromised by the mobility of transient Pt-H species formed during the purification process. Scanning electron microscopy data show that this results in the formation of porous structures and can even cause the deposit to lose structural integrity. However, this phenomenon suggests that the use of AH may be a useful strategy to create high surface area Pt catalysts and may reverse the effects of sintering. In marked contrast to the effect observed with AH, densification of the structure was observed during the postdeposition purification of PtC x deposits created from MeCpPtMe3 using atomic oxygen (AO), although the limited penetration depth of AO restricts its effectiveness as a purification strategy to relatively small nanostructures.

7.
Langmuir ; 31(31): 8718-25, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26172335

ABSTRACT

Monolayer-protected gold nanoparticles (AuNPs) with average diameters of 2-4 nm have been covalently attached to zinc oxide nanorods using dithiol ligands. Electron microscopy and Raman spectroscopy show that ozone treatment or annealing at 300 or 450 °C increases the average diameter of the AuNPs to 6, 8, and 14 (±1) nm, respectively, and decomposes the organic layers to various degrees. These treatments locate the AuNPs closer to the nanorods. Heating and subsequent ozone exposure changes the color of the as-prepared nanocomposite powder from blue to purple due to oxidation of the outer layer of the AuNPs, and heating to 300 °C changes it to pink due to oxygen desorption. ZnO nanorods have a bimodal photoluminescence spectrum that consists of an ultraviolet excitonic peak and a visible, surface defect-related peak. Ozone treatment and annealing of the nanocomposite decreases the intensities of both peaks due to quenching by the AuNPs, but the visible peak is affected less. The photocatalytic efficiency of the nanocomposites toward oxidative degradation of rhodamine B has been measured and follows the order 300 °C > 450 °C > ozone treated ≈ as-prepared ≈ bare ZnO. The greater efficiency of the annealed samples likely arises from decreased electron-hole pair recombination rates.

SELECTION OF CITATIONS
SEARCH DETAIL
...