Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Biomed Opt Express ; 15(5): 3441-3456, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38855670

ABSTRACT

In histopathology, it is highly crucial to have chemical and structural information about tissues. Additionally, the segmentation of zones within a tissue plays a vital role in investigating the functions of these regions for better diagnosis and treatment. The placenta plays a vital role in embryonic and fetal development and in diagnosing some diseases associated with its dysfunction. This study provides a label-free approach to obtain the images of mature mouse placenta together with the chemical differences between the tissue compartments using Raman spectroscopy. To generate the Raman images, spectra of placental tissue were collected using a custom-built optical setup. The pre-processed spectra were analyzed using statistical and machine learning methods to acquire the Raman maps. We found that the placental regions called decidua and the labyrinth zone are biochemically distinct from the junctional zone. A histologist performed a comparison and evaluation of the Raman map with histological images of the placental tissue, and they were found to agree. The results of this study show that Raman spectroscopy offers the possibility of label-free monitoring of the placental tissue from mature mice while simultaneously revealing crucial structural information about the zones.

2.
RSC Adv ; 14(4): 2603-2609, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38226141

ABSTRACT

Intervertebral disc herniation (IVDH) is observed in humans as a result of the alteration of annulus fibrous (AF) and nucleus pulposus (NP) tissue compositions in intervertebral discs. In this study, we studied the feasibility of scanning acoustic microscopy (SAM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) in characterizing the herniated segments of AF and NP tissues from male and female patients. SAM determined the acoustic property variations in AF and NP tissues by calculating the acoustic impedance values of samples of 15 patients. SEM obtained higher resolution images and EDS made elemental analysis of the specimen. Consequently, we suggest that these techniques have the potential to be combined for the investigation and removal of the disrupted AF and NP tissues with micrometer resolution in clinics.

3.
Med Phys ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38127935

ABSTRACT

BACKGROUND: Ionoacoustics is a promising approach to reduce the range uncertainty in proton therapy. A miniature-sized optical hydrophone (OH) was used as a measuring device to detect weak ionoacoustic signals with a high signal-to-noise ratio in water. However, further development is necessary to prevent wave distortion because of nearby acoustic impedance discontinuities while detection is conducted on the patient's skin. PURPOSE: A prototype of the probe head attached to an OH was fabricated and the required dimensions were experimentally investigated using a 100-MeV proton beam from a fixed-field alternating gradient accelerator and k-Wave simulations. The beam range of the proton in a tissue-mimicking phantom was estimated by measuring γ-waves and spherical ionoacoustic waves with resonant frequency (SPIRE). METHODS: Four sizes of probe heads were fabricated from agar blocks for the OH. Using the prototype, the Î³-wave was detected at distal and lateral positions to the Bragg peak on the phantom surface for proton beams delivered at seven positions. For SPIRE, independent measurements were performed at distal on- and off-axis positions. The range positions were estimated by solving the linear equation using the sensitive matrix for the γ-wave and linear fitting of the correlation curve for SPIRE; they were compared with those measured using a film. RESULTS: The first peak of the γ-wave was undistorted with the 3 × 3 × 3-cm3 probe head used at the on-axis and 3-cm off-axis positions. The range positions estimated by the γ-wave agreed with the film-based range in the depth direction (the maximum deviation was 0.7 mm), although a 0.6-2.1 mm deviation was observed in the lateral direction. For SPIRE, the deviation was <1 mm for the two measurement positions. CONCLUSIONS: The attachment of a relatively small-sized probe head allowed the OH to measure the beam range on the phantom surface.

4.
Biochem Biophys Rep ; 35: 101490, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37664525

ABSTRACT

Red blood cells of vertebrates have undergone evolutionary changes over time, leading to the diversification of morphological and mechanical properties of red blood cells (RBCs). Among the vertebrates, camelids have the most different RBC characteristics. As a result of adaptation to the desert environment, camelid RBCs can expand twice as much of their total volume in the case of rapid hydration yet are almost undeformable under mechanical stress. In this work, the mechanical and chemical differences in the RBC properties of the human and camelid species were examined using optical tweezers and Raman spectroscopy. We measured the deformability of camel and human RBCs at the single-cell level using optical tweezers. We found that the deformability index (DI) of the camel and the human RBCs were 0.024 ± 0.019 and 0.215 ± 0.061, respectively. To investigate the chemical properties of these cells, we measured the Raman spectra of the whole blood samples. The result of our study indicated that some of the Raman peaks observed on the camel's blood spectrum were absent in the human blood's spectrum, which further points to the difference in chemical contents of these two species' RBCs.

5.
Turk J Biol ; 47(3): 158-169, 2023.
Article in English | MEDLINE | ID: mdl-37529416

ABSTRACT

Background/aim: Matrix metalloproteinases (MMPs) play an important role in the evaluation of many cancer types; however, the detection usually presents a challenge. Further assays for a better understanding of the fundamental roles of MMPs in pathophysiology are still needed. We aimed to use an activatable probe in scanning acoustic microscopy (SAM) to evaluate acoustically if the probe can aid the visualization of the effects of in vitro MMP activity. Materials and methods: We applied scanning acoustic impedance microscopy to obtain acoustic impedance maps of the cell line models of HT1080, THP-1, and SK-MEL-28 with and without MMPSense 680 probe incubation. We visually validated our results using confocal laser scanning microscopy imaging. We further analyzed the effects of MMPSense 680 probe on cell viabilities to eliminate any artifacts. Results: This is the first study presenting the applicability of SAM in the acoustical evaluation of MMPSense 680 probe cleavage in a cellular medium through acoustic impedance measurements. We proposed that SAM measurement with the activatable probe can be used as an effective tool for studying the acoustical variations of MMP activities in cell lines. As a result, we detected MMPSense 680 probe cleavage in HT1080 human fibrosarcoma cell line. Conclusion: We showed that SAM with the smart probe can detect proteolytic activity using MMPSense 680 in in vitro HT1080 cell line by acoustic impedance measurements. SAM could be proposed as an alternative tool leading a novel way for a better understanding of the roles of MMPs in cancer progression before clinical settings.

6.
Front Plant Sci ; 14: 1116876, 2023.
Article in English | MEDLINE | ID: mdl-36909443

ABSTRACT

This research aimed to assess the feasibility of utilizing Raman spectroscopy in plant breeding programs. For this purpose, the evaluation of the mutant populations set up the application of 4 mM NaN3 to the somatic embryos obtained from mature wheat (Triticum aestivum L. Adana-99 cv.) embryos. Advanced wheat mutant lines, which were brought up to the seventh generation with salt stress tolerance by following in vitro and in vivo environments constructed by mutated populations, were evaluated using conventional techniques [measurement of antioxidant enzyme activities (SOD, CAT, and POX), total chlorophyll, TBARS, and proline contents; measurement of the concentration of Na+ and K+ ions; and evaluation of gene expression by qPCR (TaHKT2;1, TaHKT1;5, TaSOS1, TaNa+/H+ vacuolar antiporter, TaV-PPase, TaV-ATPase, and TaP5CS)] and Raman spectroscopy. In this research, no significant difference was found in the increase of SOD, CAT, and POX antioxidant enzyme activities between the salt-treated and untreated experimental groups of the commercial cultivar, while there was a statistically significant increase in salt-treated advanced generation mutant lines as compared to control and the salt-treated commercial cultivar. Proline showed a statistically significant increase in all experimental groups compared to the untreated commercial cultivar. The degradation in the amount of chlorophyll was lower in the salt-treated advanced generation mutant lines than in the salt-treated commercial cultivar. According to gene expression studies, there were statistical differences at various levels in terms of Na+ and/or K+ uptake from soil to plant (TaHKT2;1, TaHKT1;5, and TaSOS1), and Na+ compartmentalizes into the cell vacuole (TaNa+/H+ vacuolar antiporter, Ta vacuolar pyrophosphatase, and Ta vacuolar H+-ATPase). The expression activity of TaP5CS, which is responsible for the transcription of proline, is similar to the content of proline in the current study. As a result of Raman spectroscopy, the differences in peaks represent the protein-related bands in mutant lines having a general decreasing trend in intensity when compared to the commercial cultivar. Amide-I (1,630 and 1,668 cm-1), Histidine, Lysine, Arginine, and Leucine bands (823, 849, 1,241, 1,443, and 1,582 cm-1) showed decreasing wavenumbers. Beta-carotene peaks at 1,153 and 1,519 cm-1 showed increasing trends when the normalized Raman intensities of the mutant lines were compared.

7.
Small ; 19(9): e2205519, 2023 03.
Article in English | MEDLINE | ID: mdl-36642804

ABSTRACT

Exosomes, nano-sized extracellular vesicles (EVs) secreted from cells, carry various cargo molecules reflecting their cells of origin. As EV content, structure, and size are highly heterogeneous, their classification via cargo molecules by determining their origin is challenging. Here, a method is presented combining surface-enhanced Raman spectroscopy (SERS) with machine learning algorithms to employ the classification of EVs derived from five different cell lines to reveal their cellular origins. Using an artificial neural network algorithm, it is shown that the label-free Raman spectroscopy method's prediction ratio correlates with the ratio of HT-1080 exosomes in the mixture. This machine learning-assisted SERS method enables a new direction through label-free investigation of EV preparations by differentiating cancer cell-derived exosomes from those of healthy. This approach will potentially open up new avenues of research for early detection and monitoring of various diseases, including cancer.


Subject(s)
Exosomes , Extracellular Vesicles , Neoplasms , Humans , Exosomes/metabolism , Spectrum Analysis, Raman/methods , Extracellular Vesicles/metabolism , Neoplasms/diagnosis , Neoplasms/metabolism , Cell Line
8.
Med Phys ; 50(4): 2438-2449, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36565440

ABSTRACT

BACKGROUND: Proton range uncertainty has been the main factor limiting the ability of proton therapy to concentrate doses to tumors to their full potential. Ionoacoustic (IA) range verification is an approach to reducing this uncertainty by detecting thermoacoustic waves emitted from an irradiated volume immediately following a pulsed proton beam delivery; however, the signal weakness has been an obstacle to its clinical application. To increase the signal-to-noise ratio (SNR) with the conventional piezoelectric hydrophone (PH), the detector-sensitive volume needs to be large, but it could narrow the range of available beam angles and disturb real-time images obtained during beam delivery. PURPOSE: To prevent this issue, we investigated a millimeter-sized optical hydrophone (OH) that exploits the laser interferometric principle. For two types of IA waves [γ-wave emitted from the Bragg peak (BP) and a spherical IA wave with resonant frequency (SPIRE) emitted from the gold fiducial marker (GM)], comparisons were made with PH in terms of waveforms, SNR, range detection accuracy, and signal intensity robustness against the small detector misalignment, particularly for SPIRE. METHODS: A 100-MeV proton beam with a 27 ns pulse width and 4 mm beam size was produced using a fixed-field alternating gradient accelerator and was irradiated to the water phantom. The GM was set on the beam's central axis. Acrylic plates of various thicknesses, up to 12 mm, were set in front of the phantoms to shift the proton range. OH was set distal and lateral to the beam, and the range was estimated using the time-of-flight method for γ-wave and by comparing with the calibration data (SPIRE intensity versus the distance between the GM and BP) derived from an IA wave transport simulation for SPIRE. The BP dose per pulse was 0.5-0.6 Gy. To measure the variation in SPIRE amplitude against the hydrophone misalignment, the hydrophone was shifted by ± 2 mm at a maximum in lateral directions. RESULTS: Despite its small size, OH could detect γ-wave with a higher SNR than the conventional PH (diameter, 29 mm), and a single measurement was sufficient to detect the beam range with a submillimeter accuracy in water. In the SPIRE measurement, OH was far more robust against the detector misalignment than the focused PH (FPH) used in our previous study [5%/mm (OH) versus 80%/mm (FPH)], and the correlation between the measured SPIRE intensity and the distance between the GM and BP agreed well with the simulation results. However, the OH sensitivity was lower than the FPH sensitivity, and about 5.6-Gy dose was required to decrease the intensity variation among measurements to less than 10%. CONCLUSION: The miniature OH was found to detect weak IA signals produced by proton beams with a BP dose used in hypofractionated regimens. The OH sensitivity improvement at the MHz regime is worth exploring as the next step.


Subject(s)
Proton Therapy , Protons , Water , Acoustics , Proton Therapy/methods , Phantoms, Imaging , Monte Carlo Method , Radiotherapy Dosage
9.
Math Biosci Eng ; 19(11): 10941-10962, 2022 08 01.
Article in English | MEDLINE | ID: mdl-36124576

ABSTRACT

Tumor hypoxia is commonly recognized as a condition stimulating the progress of the aggressive phenotype of tumor cells. Hypoxic tumor cells inhibit the delivery of cytotoxic drugs, causing hypoxic areas to receive insufficient amounts of anticancer agents, which results in adverse treatment responses. Being such an obstruction to conventional therapies for cancer, hypoxia might be considered a target to facilitate the efficacy of treatments in the resistive environment of tumor sites. In this regard, benefiting from prodrugs that selectively target hypoxic regions remains an effective approach. Additionally, combining hypoxia-activated prodrugs (HAPs) with conventional chemotherapeutic drugs has been used as a promising strategy to eradicate hypoxic cells. However, determining the appropriate sequencing and scheduling of the combination therapy is also of great importance in obtaining favorable results in anticancer therapy. Here, benefiting from a modeling approach, we study the efficacy of HAPs in combination with chemotherapeutic drugs on tumor growth and the treatment response. Different treatment schedules have been investigated to see the importance of determining the optimal schedule in combination therapy. The effectiveness of HAPs in varying hypoxic conditions has also been explored in the study. The model provides qualitative conclusions about the treatment response, as the maximal benefit is obtained from combination therapy with greater cell death for highly hypoxic tumors. It has also been observed that the antitumor effects of HAPs show a hypoxia-dependent profile.


Subject(s)
Antineoplastic Agents , Neoplasms , Prodrugs , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Humans , Hypoxia/drug therapy , Neoplasms/drug therapy , Neoplasms/metabolism , Prodrugs/pharmacology , Tumor Hypoxia
10.
Sci Rep ; 12(1): 7197, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35504913

ABSTRACT

The salinity level of the growing medium has diverse effects on the development of plants, including both physical and biochemical changes. To determine the salt stress level of a plant endures, one can measure these structural and chemical changes. Raman spectroscopy and biochemical analysis are some of the most common techniques in the literature. Here, we present a combination of machine learning and Raman spectroscopy with which we can both find out the biochemical change that occurs while the medium salt concentration changes and predict the level of salt stress a wheat sample experiences accurately using our trained regression models. In addition, by applying different machine learning algorithms, we compare the level of success for different algorithms and determine the best method to use in this application. Production units can take actions based on the quantitative information they get from the trained machine learning models related to salt stress, which can potentially increase efficiency and avoid the loss of crops.


Subject(s)
Spectrum Analysis, Raman , Triticum , Crops, Agricultural , Machine Learning , Plant Leaves , Salt Stress
11.
Sci Rep ; 12(1): 6461, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440791

ABSTRACT

Atrial fibrillation (AF) is diagnosed with the electrocardiogram, which is the gold standard in clinics. However, sufficient arrhythmia monitoring takes a long time, and many of the tests are made in only a few seconds, which can lead arrhythmia to be missed. Here, we propose a combined method to detect the effects of AF on atrial tissue. We characterize tissues obtained from patients with or without AF by scanning acoustic microscopy (SAM) and by Raman spectroscopy (RS) to construct a mechano-chemical profile. We classify the Raman spectral measurements of the tissue samples with an unsupervised clustering method, k-means and compare their chemical properties. Besides, we utilize scanning acoustic microscopy to compare and determine differences in acoustic impedance maps of the groups. We compared the clinical outcomes with our findings using a neural network classification for Raman measurements and ANOVA for SAM measurements. Consequently, we show that the stiffness profiles of the tissues, corresponding to the patients with chronic AF, without AF or who experienced postoperative AF, are in agreement with the lipid-collagen profiles obtained by the Raman spectral characterization.


Subject(s)
Atrial Fibrillation , Acoustics , Atrial Fibrillation/diagnosis , Heart Atria/diagnostic imaging , Humans , Microscopy, Acoustic , Spectrum Analysis, Raman
12.
Sci Rep ; 12(1): 1628, 2022 01 31.
Article in English | MEDLINE | ID: mdl-35102179

ABSTRACT

In solid tumors, elevated fluid pressure and inadequate blood perfusion resulting from unbalanced angiogenesis are the prominent reasons for the ineffective drug delivery inside tumors. To normalize the heterogeneous and tortuous tumor vessel structure, antiangiogenic treatment is an effective approach. Additionally, the combined therapy of antiangiogenic agents and chemotherapy drugs has shown promising effects on enhanced drug delivery. However, the need to find the appropriate scheduling and dosages of the combination therapy is one of the main problems in anticancer therapy. Our study aims to generate a realistic response to the treatment schedule, making it possible for future works to use these patient-specific responses to decide on the optimal starting time and dosages of cytotoxic drug treatment. Our dataset is based on our previous in-silico model with a framework for the tumor microenvironment, consisting of a tumor layer, vasculature network, interstitial fluid pressure, and drug diffusion maps. In this regard, the chemotherapy response prediction problem is discussed in the study, putting forth a proof of concept for deep learning models to capture the tumor growth and drug response behaviors simultaneously. The proposed model utilizes multiple convolutional neural network submodels to predict future tumor microenvironment maps considering the effects of ongoing treatment. Since the model has the task of predicting future tumor microenvironment maps, we use two image quality evaluation metrics, which are structural similarity and peak signal-to-noise ratio, to evaluate model performance. We track tumor cell density values of ground truth and predicted tumor microenvironments. The model predicts tumor microenvironment maps seven days ahead with the average structural similarity score of 0.973 and the average peak signal ratio of 35.41 in the test set. It also predicts tumor cell density at the end day of 7 with the mean absolute percentage error of [Formula: see text].


Subject(s)
Neural Networks, Computer
13.
Anal Methods ; 13(39): 4683-4690, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34549754

ABSTRACT

Aortic aneurysm is observed as a result of the extensive alteration in the elasticity of the aortic wall due to the breakdown of elastin and collagen. In this study, we studied the feasibility of scanning acoustic microscopy (SAM) and Raman spectroscopy (RS) in characterizing the dilated segments of the aorta from male and female patients with aortic aneurysm. SAM determined the acoustic property variation in the aorta by calculating the acoustic impedance values of aorta samples of 18 patients. RS determined the disease states by analyzing the chemical variation especially in the peaks related to elastin and collagen using the k-means classification method. Consequently, we assume that combining these two techniques in clinics will help to investigate the dilated segment of the aorta with micrometer resolution, which will reduce the possibility of new aneurysm formation due to a segment not excised during the surgery.


Subject(s)
Aortic Aneurysm , Microscopy, Acoustic , Aorta/diagnostic imaging , Aortic Aneurysm/diagnosis , Elastin , Female , Humans , Male , Spectrum Analysis, Raman
14.
Anal Methods ; 13(35): 3963-3969, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34528949

ABSTRACT

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare disease characterized by hemolysis of red blood cells (RBC) and venous thrombosis. The gold standard method for the diagnosis of this disease is flow cytometry. Here, we propose a combined optical tweezers and Raman spectral (Raman tweezers) approach to analyze blood samples from volunteers with or without PNH conditions. Raman spectroscopy is a well-known method for investigating a material's chemical structure and is also used in molecular analysis of biological compounds. In this study, we trap individual RBCs found in whole blood samples drawn from PNH patients and the control group. Evaluation of the Raman spectra of these cells by band component analysis and machine learning shows a significant difference between the two groups. The specificity and the sensitivity of the training performed by support vector machine (SVM) analysis were found to be 81.8% and 78.3%, respectively. This study shows that an immediate and high accuracy test result is possible for PNH disease by employing Raman tweezers and machine learning.


Subject(s)
Hemoglobinuria, Paroxysmal , Erythrocyte Count , Erythrocytes , Flow Cytometry , Hemoglobinuria, Paroxysmal/diagnosis , Hemolysis , Humans
15.
Med Phys ; 48(9): 5490-5500, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34173991

ABSTRACT

PURPOSE: Ionoacoustics is one of the promising approaches to verify the beam range in proton therapy. However, the weakness of the wave signal remains a main hindrance to its application in clinics. Here we studied the potential use of a fixed-field alternating gradient accelerator (FFA), one of the accelerator candidates for future proton therapy. For such end, magnitude of the pressure wave and range accuracy achieved by the short-pulsed beam of FFA were assessed, using both simulation and experimental procedure. METHODS: A 100 MeV proton beam from the FFA was applied on a water phantom, through the acrylic wall. The beam range measured by the Bragg peak (BP)-ionization chamber (BPC) was 77.6 mm, while the maximum dose at BP was estimated to be 0.35 Gy/pulse. A hydrophone was placed 20 mm downstream of the BP, and signals were amplified and stored by a digital oscilloscope, averaged, and low-pass filtered. Time-of-flight (TOF) and two relative TOF values were analyzed in order to determine the beam range. Furthermore, an acoustic wave transport simulation was conducted to estimate the amplitude of the pressure waves. RESULTS: The range calculated when using two relative TOF was 78.16 ± 0.01 and 78.14 ± 0.01 mm, respectively, both values being coherent with the range measured by the BPC (the difference was 0.5-0.6 mm). In contrast, utilizing the direct TOF resulted in a range error of 1.8 mm. Fivefold and 50-fold averaging were required to suppress the range variation to below 1 mm for TOF and relative TOF measures, respectively. The simulation suggested the magnitude of pressure wave at the detector exceeded 7 Pascal. CONCLUSION: A submillimeter range accuracy was attained with a pulsed beam of about 21 ns from an FFA, at a clinical energy using relative TOF. To precisely quantify the range with a single TOF measurement, subsequent improvement in the measuring system is required.


Subject(s)
Proton Therapy , Protons , Acoustics , Phantoms, Imaging , Radiotherapy Dosage , Sound
16.
Anal Methods ; 13(26): 2926-2935, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34109334

ABSTRACT

The use of phthalates as plasticizers has been omnipresent, especially in cosmetics and food packaging, despite the proven effects on some organs of humans and animals. Therefore, alterations in living organisms due to phthalate exposure attract the attention of many scientists. Here, we demonstrate a mechanical and chemical investigation of the mentioned effects of di(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP) on rat liver by utilizing scanning acoustic microscopy (SAM), Raman spectroscopy (RS) and inductively coupled plasma optical emission spectrometry (ICP-OES) for the first time in the literature, as far as we know. The combined analysis gives insights into the degree of modification in the tissue components and which chemicals lead to these modifications. Our study shows that the acoustic impedance values of tissues of DEHP and DBP delivered mother rats are higher than those of tissues of the control mother rat, while the acoustic impedance values of tissues of offspring rats of DEHP and DBP delivered mother rats do not differ significantly from those of tissues of the control offspring rats of the control mother rat. Besides, RS analysis shows how the incorporation of DEHP into liver tissues changes the configuration and conformation of lipids and fatty acids. ICP-OES results show increased element levels within the tissues of DEHP and DBP delivered rats. Therefore, we can say that phthalates cause modifications within the liver. This study is a preliminary effort to investigate tissues with a mechano-chemical probe.


Subject(s)
Diethylhexyl Phthalate , Animals , Diethylhexyl Phthalate/toxicity , Liver , Microscopy, Acoustic , Phthalic Acids , Rats , Spectrum Analysis, Raman
17.
RSC Adv ; 11(26): 15519-15527, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-35481205

ABSTRACT

Radiation therapy is widely used as a treatment tool for malignancies. However, radiation-related complications are still unavoidable risks for off-target cells. Little is known about radiation therapy's possible effects on mechanical features of the off-target cells such as human red blood cells (RBCs). RBCs are nucleus-free circulating cells that can deform without losing functionality in healthy conditions. Thus, to evaluate in vitro effects of radiation therapy on the healthy plasma membrane of cells, RBCs were selected as a primary test model. RBCs were exposed to clinically prescribed radiotherapy doses of 2 Gy, 12 Gy and, 25 Gy, and each radiotherapy dose group was compared to a non-irradiated group. Cells were characterized by stretching using dual-beam optical tweezers and compared using the resulting deformability index. The group receiving the highest radiation dose was found statistically distinguishable from the control group (DI0Gy = 0.33 ± 0.08), and revealed the highest deformability index (DI25Gy = 0.38 ± 0.11, p = 0.0068), while no significant differences were found for 2 Gy (DI2Gy = 0.33 ± 0.08, p = 0.9) and 12 Gy (DI12Gy = 0.31 ± 0.09, p = 0.2) dose groups. Based on these findings, we conclude that radiotherapy exposure may alter the deformability of red blood cells depending on the dose amount, and measurement of deformability index by dual-beam optical tweezers can serve as a sensitive biomarker to probe responses of cells to the radiotherapy.

18.
Ultrasonics ; 110: 106274, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33130362

ABSTRACT

Tissue-mimicking materials (TMMs) play a key role in the quality assurance of ultrasound diagnostic equipment and should have acoustic properties similar to human tissues. We propose a method to quantify the acoustic properties of TMM samples through the use of an 80 MHz Scanning Acoustic Microscopy (SAM), which provides micrometer resolution and fast data recording. We produced breast TMM samples in varying compositions that resulted in acoustic impedance values in the range of 1.373 ± 0.031 and 1.707 ± 0.036 MRayl. Additionally, liver TMM and blood mimicking fluid (BMF) samples were prepared that had acoustic impedance values of 1.693 ± 0.085 MRayl and 1.624 ± 0.006 MRayl, respectively. The characterization of the TMMs by SAM may provide reproducible and uniform acoustic reference data for tissue substitutes in a single-run microscopy experiment.


Subject(s)
Biomimetic Materials , Microscopy, Acoustic/methods , Acoustics , Phantoms, Imaging
19.
Sci Rep ; 10(1): 20385, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33230208

ABSTRACT

In contrast to conventional X-ray therapy, proton beam therapy (PBT) can confine radiation doses to tumours because of the presence of the Bragg peak. However, the precision of the treatment is currently limited by the uncertainty in the beam range. Recently, a unique range verification methodology has been proposed based on simulation studies that exploit spherical ionoacoustic waves with resonant frequency (SPIREs). SPIREs are emitted from spherical gold markers in tumours initially introduced for accurate patient positioning when the proton beam is injected. These waves have a remarkable property: their amplitude is linearly correlated with the residual beam range at the marker position. Here, we present proof-of-principle experiments using short-pulsed proton beams at the clinical dose to demonstrate the feasibility of using SPIREs for beam-range verification with submillimetre accuracy. These results should substantially contribute to reducing the range uncertainty in future PBT applications.


Subject(s)
Gold/radiation effects , Phantoms, Imaging , Proton Therapy/methods , Protons , Gold/chemistry , Humans , Monte Carlo Method , Proton Therapy/instrumentation , Radiotherapy Dosage , Sound , Water/chemistry
20.
Radiat Oncol ; 15(1): 38, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32066465

ABSTRACT

BACKGROUND: On the elastic profiles of human teeth after radiotherapy for head and neck cancers, generation of dental complications, which may bring several side effects preventing the quality of life, has not well clarified. Thus, we aimed to show the applicability of using 320 MHz Scanning Acoustic Microscopy (SAM) in the evaluation of the tooth damage acoustically at the micrometer level following radiation therapy, and also in the determination of the safe dose limits to impede severe dental damage. METHODS: This prospective study was performed by SAM employed at 320 MHz by an azimuthal resolution of 4.7 µm resolving enamel and dentin. A total of 45 sound human third molar teeth collected between September 2018 and May 2019 were used for the acoustic impedance measurements pre- and post irradiation. Nine samples for each group (control, 2 Gy, 8 Gy, 20 Gy, 30 Gy and 60 Gy) were evaluated to acquire the acoustic images and perform a qualitative analysis. Scanning Electron Microscopy (SEM) images were obtained to establish a relationship between micromechanical and morphological characteristics of the teeth. Statistical analysis was conducted using the Student t-test succeded by Mann-Whitney U investigation (p < .05), while SEM images were assessed qualitatively. RESULTS: The analysis included 45 sound teeth collected from men and women 18 to 50 years old. Post irradiation micromechanical variations of human teeth were significant only in the radiation groups of 30 Gy and 60 Gy compared to pre-irradiation group for enamel (7.24 ± 0.18 MRayl and 6.49 ± 028 MRayl; p < 0.05, respectively). Besides, the teeth subjected to radiation doses of 20, 30 and 60 Gy represented significantly lower acoustic impedance values relative to non-irradiated group for dentin (6.52 ± 0.43 MRayl, 5.71 ± 0.66 MRayl and 4.82 ± 0.53 MRayl p < 0.05), respectively. CONCLUSIONS: These results are evidence for a safe acoustic examination device which may be a useful tool to visualize and follow the safe dose limits to impede severe dental damage through the radiation therapy treatment for head and neck cancers.


Subject(s)
Elasticity/radiation effects , Head and Neck Neoplasms/radiotherapy , Microscopy, Acoustic/methods , Quality of Life , Radiation Injuries/diagnosis , Radiotherapy, Intensity-Modulated/adverse effects , Tooth/radiation effects , Adolescent , Adult , Case-Control Studies , Female , Head and Neck Neoplasms/pathology , Humans , Male , Middle Aged , Organs at Risk/radiation effects , Prognosis , Prospective Studies , Radiation Injuries/diagnostic imaging , Radiation Injuries/etiology , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Tooth/diagnostic imaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...