Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(27): e202403229, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38577991

ABSTRACT

We present a catalyst-free route for the reduction of carbon dioxide integrated with the formation of a carbon-carbon bond at the air/water interface of negatively charged aqueous microdroplets, at ambient temperature. The reactions proceed through carbanion generation at the α-carbon of a ketone followed by nucleophilic addition to CO2. Online mass spectrometry reveals that the product is an α-ketoacid. Several factors, such as the concentration of the reagents, pressure of CO2 gas, and distance traveled by the droplets, control the kinetics of the reaction. Theoretical calculations suggest that water in the microdroplets facilitates this unusual chemistry. Furthermore, such a microdroplet strategy has been extended to seven different ketones. This work demonstrates a green pathway for the reduction of CO2 to useful carboxylated organic products.

2.
Small ; : e2400159, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671561

ABSTRACT

The creation of micrometer-sized sheets of silver at the air-water interface by direct deposition of electrospray-generated silver ions (Ag+) on an aqueous dispersion of reduced graphene oxide (RGO), in ambient conditions, is reported. In the process of electrospray deposition (ESD), an electrohydrodynamic flow is created in the aqueous dispersion, and the graphene sheets assemble, forming a thin film at the air-water interface. The deposited Ag+ coalesce to make single-crystalline Ag sheets on top of this assembled graphene layer. Fast neutralization of Ag+ forming atomic Ag, combined with their enhanced mobility on graphene surfaces, presumably facilitates the growth of larger Ag clusters. Moreover, restrictions imposed by the interface drive the crystal growth in 2D. By controlling the precursor salt concentration, RGO concentration, deposition time, and ion current, the dimensionality of the Ag sheets can be tuned. These Ag sheets are effective substrates for surface-enhanced Raman spectroscopy (SERS), as demonstrated by the successful detection of methylene blue at nanomolar concentrations.

3.
Chem Commun (Camb) ; 58(91): 12657-12660, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36250601

ABSTRACT

Molecular de-aggregation was observed at the air/water interface of aqueous microdroplets. We probed this phenomenon using dyes such as Rhodamine 6G (R6G), Rhodamine B, acridine orange, and fluorescein, which show aggregation-induced shift in fluorescence. The fluorescence micrographs of microdroplets derived from the aqueous solutions of these dyes show that they are monomeric at the air/water interface, but highly aggregated at the core. We propose that rapid evaporation of the solvent influences the de-aggregation of molecules at the air-water interface of the microdroplets.


Subject(s)
Acridine Orange , Water , Rhodamines , Fluorescein , Spectrometry, Fluorescence , Coloring Agents
4.
ACS Nano ; 15(3): 5023-5031, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33587609

ABSTRACT

Generation of current or potential at nanostructures using appropriate stimuli is one of the futuristic methods of energy generation. We developed an ambient soft ionization method for mass spectrometry using 2D-MoS2, termed streaming ionization, which eliminates the use of traditional energy sources needed for ion formation. The ionic dissociation-induced electrokinetic effect at the liquid-solid interface is the reason for energy generation. We report the highest figure of merit of current generation of 1.3 A/m2 by flowing protic solvents at 22 µL/min over a 1 × 1 mm2 surface coated with 2D-MoS2, which is adequate to produce continuous ionization of an array of analytes, making mass spectrometry possible. Weakly bound ion clusters and uric acid in urine have been detected. Further, the methodology was used as a self-energized breath alcohol sensor capable of detecting 3% alcohol in the breath.


Subject(s)
Molybdenum , Nanostructures , Disulfides , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...