Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters











Publication year range
1.
Neurobiol Dis ; 201: 106675, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39306014

ABSTRACT

α-synuclein (αSyn) is a presynaptic and nuclear protein that aggregates in important neurodegenerative diseases such as Parkinson's Disease (PD), Parkinson's Disease Dementia (PDD) and Lewy Body Dementia (LBD). Our past work suggests that nuclear αSyn may regulate forms of DNA double-strand break (DSB) repair in HAP1 cells after DNA damage induction with the chemotherapeutic agent bleomycin1. Here, we report that genetic deletion of αSyn specifically impairs the non-homologous end-joining (NHEJ) pathway of DSB repair using an extrachromosomal plasmid-based repair assay in HAP1 cells. Notably, induction of a single DSB at a precise genomic location using a CRISPR/Cas9 lentiviral approach also showed the importance of αSyn in regulating NHEJ in HAP1 cells and primary mouse cortical neuron cultures. This modulation of DSB repair is regulated by the activity of the DNA damage response signaling kinase DNA-PKcs, since the effect of αSyn loss-of-function is reversed by DNA-PKcs inhibition. Together, these findings suggest that αSyn plays an important physiologic role in regulating DSB repair in both a transformed cell line and in primary cortical neurons. Loss of this nuclear function may contribute to the neuronal genomic instability detected in PD, PDD and LBD and points to DNA-PKcs as a potential therapeutic target.

2.
bioRxiv ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39229234

ABSTRACT

The appearance of misfolded and aggregated proteins is a pathological hallmark of numerous neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Sleep disruption is proposed to contribute to these pathological processes and is a common early feature among neurodegenerative disorders. Synucleinopathies are a subclass of neurodegenerative conditions defined by the presence of α-synuclein aggregates, which may not only enhance cell death, but also contribute to disease progression by seeding the formation of additional aggregates in neighboring cells. The mechanisms driving intercellular transmission of aggregates remains unclear. We propose that disruption of sleep-active glymphatic function, caused by loss of precise perivascular AQP4 localization, inhibits α-synuclein clearance and facilitates α-synuclein propagation and seeding. We examined human post-mortem frontal cortex and found that neocortical α-synuclein pathology was associated with AQP4 mis-localization throughout the gray matter. Using a transgenic mouse model lacking the adapter protein α-syntrophin, we observed that loss of perivascular AQP4 localization impairs the glymphatic clearance of α-synuclein from intersititial to cerebrospinal fluid. Using a mouse model of α-synuclein propogation, using pre-formed fibril injection, we observed that loss of perivascular AQP4 localization increased α-synuclein aggregates. Our results indicate α-synuclein clearance and propagation are mediated by glymphatic function and that AQP4 mis-localization observed in the presence of human synucleinopathy may contribute to the development and propagation of Lewy body pathology in conditions such as Lewy Body Dementia and Parkinson's disease.

3.
bioRxiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38496612

ABSTRACT

α-synuclein (αSyn) is a presynaptic and nuclear protein that aggregates in important neurodegenerative diseases such as Parkinson's Disease (PD), Parkinson's Disease Dementia (PDD) and Lewy Body Dementia (LBD). Our past work suggests that nuclear αSyn may regulate forms of DNA double-strand break (DSB) repair in HAP1 cells after DNA damage induction with the chemotherapeutic agent bleomycin1. Here, we report that genetic deletion of αSyn specifically impairs the non-homologous end-joining (NHEJ) pathway of DSB repair using an extrachromosomal plasmid-based repair assay in HAP1 cells. Importantly, induction of a single DSB at a precise genomic location using a CRISPR/Cas9 lentiviral approach also showed the importance of αSyn in regulating NHEJ in HAP1 cells and primary mouse cortical neuron cultures. This modulation of DSB repair is dependent on the activity of the DNA damage response signaling kinase DNA-PKcs, since the effect of αSyn loss-of-function is reversed by DNA-PKcs inhibition. Using in vivo multiphoton imaging in mouse cortex after induction of αSyn pathology, we find an increase in longitudinal cell survival of inclusion-bearing neurons after Polo-like kinase (PLK) inhibition, which is associated with an increase in the amount of aggregated αSyn within inclusions. Together, these findings suggest that αSyn plays an important physiologic role in regulating DSB repair in both a transformed cell line and in primary cortical neurons. Loss of this nuclear function may contribute to the neuronal genomic instability detected in PD, PDD and DLB and points to DNA-PKcs and PLK as potential therapeutic targets.

4.
bioRxiv ; 2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38260370

ABSTRACT

Although an increased risk of the skin cancer melanoma in people with Parkinson's Disease (PD) has been shown in multiple studies, the mechanisms involved are poorly understood, but increased expression of the PD-associated protein alpha-synuclein (αSyn) in melanoma cells may be important. Our previous work suggests that αSyn can facilitate DNA double-strand break (DSB) repair, promoting genomic stability. We now show that αSyn is preferentially enriched within the nucleolus in the SK-MEL28 melanoma cell line, where it colocalizes with DNA damage markers and DSBs. Inducing DSBs specifically within nucleolar ribosomal DNA (rDNA) increases αSyn levels near sites of damage. αSyn knockout increases DNA damage within the nucleolus at baseline, after specific rDNA DSB induction, and prolongs the rate of recovery from this induced damage. αSyn is important downstream of ATM signaling to facilitate 53BP1 recruitment to DSBs, reducing micronuclei formation and promoting cellular proliferation, migration, and invasion.

6.
Mol Psychiatry ; 28(8): 3343-3354, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36732588

ABSTRACT

Age, female sex, and apolipoprotein E4 (E4) are risk factors to develop Alzheimer's disease (AD). There are three major human apoE isoforms: E2, E3, and E4. Compared to E3, E4 increases while E2 decreases AD risk. However, E2 is associated with increased risk and severity of post-traumatic stress disorder (PTSD). In cognitively healthy adults, E4 carriers have greater brain activation during learning and memory tasks in the absence of behavioral differences. Human apoE targeted replacement (TR) mice display differences in fear extinction that parallel human data: E2 mice show impaired extinction, mirroring heightened PTSD symptoms in E2 combat veterans. Recently, an adaptive role of DNA double strand breaks (DSBs) in immediate early gene expression (IEG) has been described. Age and disease synergistically increase DNA damage and decrease DNA repair. As the mechanisms underlying the relative risks of apoE, sex, and their interactions in aging are unclear, we used young (3 months) and middle-aged (12 months) male and female TR mice to investigate the influence of these factors on DSBs and IEGs at baseline and following contextual fear conditioning. We assessed brain-wide changes in neural activation following fear conditioning using whole-brain cFos imaging in young female TR mice. E4 mice froze more during fear conditioning and had lower cFos immunoreactivity across regions important for somatosensation and contextual encoding compared to E2 mice. E4 mice also showed altered co-activation compared to E3 mice, corresponding to human MRI and cognitive data, and indicating that there are differences in brain activity and connectivity at young ages independent of fear learning. There were increased DSB markers in middle-aged animals and alterations to cFos levels dependent on sex and isoform, as well. The increase in hippocampal DSB markers in middle-aged animals and female E4 mice may play a role in the risk for developing AD.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Fear , Animals , Female , Humans , Male , Mice , Middle Aged , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Apolipoprotein E2/genetics , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , DNA Damage , Extinction, Psychological , Hippocampus/metabolism , Mice, Transgenic , Protein Isoforms/metabolism
7.
Int J Mol Sci ; 23(23)2022 Dec 04.
Article in English | MEDLINE | ID: mdl-36499619

ABSTRACT

Alpha-synuclein (aSyn) is a 14 kD protein encoded by the SNCA gene that is expressed in vertebrates and normally localizes to presynaptic terminals and the nucleus. aSyn forms pathological intracellular aggregates that typify a group of important neurodegenerative diseases called synucleinopathies. Previous work in human tissue and model systems indicates that some of these aggregates can be intranuclear, but the significance of aSyn aggregation within the nucleus is not clear. We used a mouse model that develops aggregated aSyn nuclear inclusions. Using aSyn preformed fibril injections in GFP-tagged aSyn transgenic mice, we were able to induce the formation of nuclear aSyn inclusions and study their properties in fixed tissue and in vivo using multiphoton microscopy. In addition, we analyzed human synucleinopathy patient tissue to better understand this pathology. Our data demonstrate that nuclear aSyn inclusions may form through the transmission of aSyn between neurons, and these intranuclear aggregates bear the hallmarks of cytoplasmic Lewy pathology. Neuronal nuclear aSyn inclusions can form rod-like structures that do not contain actin, excluding them from being previously described nuclear actin rods. Longitudinal, in vivo multiphoton imaging indicates that certain morphologies of neuronal nuclear aSyn inclusions predict cell death within 14 days. Human multiple system atrophy cases contain neurons and glia with similar nuclear inclusions, but we were unable to detect such inclusions in Lewy body dementia cases. This study suggests that the dysregulation of a nuclear aSyn function associated with nuclear inclusion formation could play a role in the forms of neurodegeneration associated with synucleinopathy.


Subject(s)
Lewy Body Disease , Multiple System Atrophy , Synucleinopathies , Animals , Mice , Humans , alpha-Synuclein/metabolism , Actins , Multiple System Atrophy/metabolism , Lewy Body Disease/pathology , Disease Models, Animal , Mice, Transgenic , Cell Death
8.
Int J Mol Sci ; 23(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35955487

ABSTRACT

DNA double-strand breaks (DSBs), classified as the most harmful type of DNA damage based on the complexity of repair, lead to apoptosis or tumorigenesis. In aging, DNA damage increases and DNA repair decreases. This is exacerbated in disease, as post-mortem tissue from patients diagnosed with mild cognitive impairment (MCI) or Alzheimer's disease (AD) show increased DSBs. A novel role for DSBs in immediate early gene (IEG) expression, learning, and memory has been suggested. Inducing neuronal activity leads to increases in DSBs and upregulation of IEGs, while increasing DSBs and inhibiting DSB repair impairs long-term memory and alters IEG expression. Consistent with this pattern, mice carrying dominant AD mutations have increased baseline DSBs, and impaired DSB repair is observed. These data suggest an adaptive role for DSBs in the central nervous system and dysregulation of DSBs and/or repair might drive age-related cognitive decline (ACD), MCI, and AD. In this review, we discuss the adaptive role of DSBs in hippocampus-dependent learning, memory, and IEG expression. We summarize IEGs, the history of DSBs, and DSBs in synaptic plasticity, aging, and AD. DSBs likely have adaptive functions in the brain, and even subtle alterations in their formation and repair could alter IEGs, learning, and memory.


Subject(s)
Alzheimer Disease , DNA Breaks, Double-Stranded , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , DNA/metabolism , DNA Repair , Hippocampus/metabolism , Mice , Neurons/metabolism
9.
Sci Rep ; 12(1): 12834, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35896679

ABSTRACT

Tight regulation of immediate early gene (IEG) expression is important for synaptic plasticity, learning, and memory. Recent work has suggested that DNA double strand breaks (DSBs) may have an adaptive role in post-mitotic cells to induce IEG expression. Physiological activity in cultured neurons as well as behavioral training leads to increased DSBs and subsequent IEG expression. Additionally, infusion of etoposide-a common cancer treatment that induces DSBs-impairs trace fear memory. Here, we assessed the effects of hippocampal infusion of 60 ng of etoposide on IEG expression, learning, and memory in 3-4 month-old C57Bl/6J mice. Etoposide altered expression of the immediate early genes cFos and Arc in the hippocampus and impaired hippocampus-dependent contextual fear memory. These data add to the growing evidence that DSBs play an important role in IEG expression, learning, and memory, opening avenues for developing novel treatment strategies for memory-related disorders.


Subject(s)
Genes, Immediate-Early , Hippocampus , Animals , Etoposide/pharmacology , Fear/physiology , Hippocampus/metabolism , Memory Disorders/metabolism , Mice , Mice, Inbred C57BL , Neuronal Plasticity
10.
Oncotarget ; 13: 198-213, 2022.
Article in English | MEDLINE | ID: mdl-35106123

ABSTRACT

DNA double strand breaks (DSBs) have been highly studied in the context of cancers, as DSBs can lead to apoptosis or tumorigenesis. Several pharmaceuticals are widely used to target DSBs during cancer therapy. Amifostine (WR-2721) and etoposide are two commonly used drugs: amifostine reduces DSBs, whereas etoposide increases DSBs. Recently, a novel role for DSBs in immediate early gene expression, learning, and memory has been suggested. Neither amifostine nor etoposide have been assessed for their effects on learning and memory without confounding factors. Moreover, sex-dependent effects of these drugs have not been reported. We administered amifostine or etoposide to 3-4-month-old male and female C57Bl/6J mice before or after training in fear conditioning and assessed learning, memory, and immediate early genes. We observed sex-dependent baseline and drug-induced differences, with females expressing higher cFos and FosB levels than males. These were affected by both amifostine and etoposide. Post-training injections of amifostine affected long-term contextual fear memory; etoposide affected contextual and cued fear memory. These data support the hypothesis that DSBs contribute to learning and memory, and that these could play a part in cognitive side effects during common treatment regimens. The sex-dependent effects also highlight an important factor when considering treatment plans.


Subject(s)
Amifostine , Neoplasms , Animals , DNA/metabolism , DNA Breaks, Double-Stranded , Etoposide/pharmacology , Female , Genes, Immediate-Early , Male , Memory, Long-Term , Mice , Pharmaceutical Preparations
11.
J Biol Chem ; 298(2): 101552, 2022 02.
Article in English | MEDLINE | ID: mdl-34973339

ABSTRACT

Alpha-synuclein (aSyn) is a vertebrate protein, normally found within the presynaptic nerve terminal and nucleus, which is known to form somatic and neuritic aggregates in certain neurodegenerative diseases. Disease-associated aggregates of aSyn are heavily phosphorylated at serine-129 (pSyn), while normal aSyn protein is not. Within the nucleus, aSyn can directly bind DNA, but the mechanism of binding and the potential modulatory roles of phosphorylation are poorly understood. Here we demonstrate using a combination of electrophoretic mobility shift assay and atomic force microscopy approaches that both aSyn and pSyn can bind DNA within the major groove, in a DNA length-dependent manner and with little specificity for DNA sequence. Our data are consistent with a model in which multiple aSyn molecules bind a single 300 base pair (bp) DNA molecule in such a way that stabilizes the DNA in a bent conformation. We propose that serine-129 phosphorylation decreases the ability of aSyn to both bind and bend DNA, as aSyn binds 304 bp circular DNA forced into a bent shape, but pSyn does not. Two aSyn paralogs, beta- and gamma-synuclein, also interact with DNA differently than aSyn, and do not stabilize similar DNA conformations. Our work suggests that reductions in aSyn's ability to bind and bend DNA induced by serine-129 phosphorylation may be important for modulating aSyn's known roles in DNA metabolism, including the regulation of transcription and DNA repair.


Subject(s)
DNA , alpha-Synuclein , DNA/chemistry , DNA/metabolism , Neurodegenerative Diseases/metabolism , Phosphorylation , Serine/metabolism , Structure-Activity Relationship , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism
12.
J Parkinsons Dis ; 11(3): 1091-1115, 2021.
Article in English | MEDLINE | ID: mdl-34057097

ABSTRACT

BACKGROUND: Alpha-synuclein (αsyn) characterizes neurodegenerative diseases known as synucleinopathies. The phosphorylated form (psyn) is the primary component of protein aggregates known as Lewy bodies (LBs), which are the hallmark of diseases such as Parkinson's disease (PD). Synucleinopathies might spread in a prion-like fashion, leading to a progressive emergence of symptoms over time. αsyn pre-formed fibrils (PFFs) induce LB-like pathology in wild-type (WT) mice, but questions remain about their progressive spread and their associated effects on behavioral performance. OBJECTIVE: To characterize the behavioral, cognitive, and pathological long-term effects of LB-like pathology induced after bilateral motor cortex PFF injection in WT mice and to assess the ability of mouse αsyn-targeted antisense oligonucleotides (ASOs) to ameliorate those effects. METHODS: We induced LB-like pathology in the motor cortex and connected brain regions of male WT mice using PFFs. Three months post-PFF injection (mpi), we assessed behavioral and cognitive performance. We then delivered a targeted ASO via the ventricle and assessed behavioral and cognitive performance 5 weeks later, followed by pathological analysis. RESULTS: At 3 and 6 mpi, PFF-injected mice showed mild, progressive behavioral deficits. The ASO reduced total αsyn and psyn protein levels, and LB-like pathology, but was also associated with some deleterious off-target effects not involving lowering of αsyn, such as a decline in body weight and impairments in motor function. CONCLUSIONS: These results increase understanding of the progressive nature of the PFF model and support the therapeutic potential of ASOs, though more investigation into effects of ASO-mediated reduction in αsyn on brain function is needed.


Subject(s)
Motor Cortex , Parkinson Disease , Synucleinopathies , Animals , Lewy Bodies/metabolism , Male , Mice , Oligonucleotides, Antisense , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
13.
Neurobiol Dis ; 152: 105291, 2021 05.
Article in English | MEDLINE | ID: mdl-33556542

ABSTRACT

Abnormal aggregation of the α-synuclein protein is a key molecular feature of Parkinson's disease and other neurodegenerative diseases. The precise mechanisms that trigger α-synuclein aggregation are unclear, and it is not known what role aggregation plays in disease pathogenesis. Here we use an in vivo zebrafish model to express several different forms of human α-synuclein and measure its aggregation in presynaptic terminals. We show that human α-synuclein tagged with GFP can be expressed in zebrafish neurons, localizing normally to presynaptic terminals and undergoing phosphorylation at serine-129, as in mammalian neurons. The visual advantages of the zebrafish system allow for dynamic in vivo imaging to study α-synuclein, including the use of fluorescence recovery after photobleaching (FRAP) techniques to probe protein mobility. These experiments reveal three distinct terminal pools of α-synuclein with varying mobility, likely representing different subpopulations of aggregated and non-aggregated protein. Human α-synuclein is phosphorylated by an endogenous zebrafish Polo-like kinase activity, and there is a heterogeneous population of neurons containing either very little or extensive phosphorylation throughout the axonal arbor. Both pharmacological and genetic manipulations of serine-129 show that phosphorylation of α-synuclein at this site does not significantly affect its mobility. This suggests that serine-129 phosphorylation alone does not promote α-synuclein aggregation. Together our results show that human α-synuclein can be expressed and measured quantitatively in zebrafish, and that disease-relevant post-translational modifications occur within neurons. The zebrafish model provides a powerful in vivo system for measuring and manipulating α-synuclein function and aggregation, and for developing new treatments for neurodegenerative disease.


Subject(s)
Disease Models, Animal , Parkinson Disease , Presynaptic Terminals/pathology , Protein Aggregation, Pathological/metabolism , alpha-Synuclein/metabolism , Animals , Animals, Genetically Modified , Humans , Phosphorylation , Serine/metabolism , Zebrafish
14.
J Biol Chem ; 296: 100273, 2021.
Article in English | MEDLINE | ID: mdl-33428941

ABSTRACT

Phosphorylation of alpha-synuclein at serine-129 is an important marker of pathologically relevant, aggregated forms of the protein in several important human diseases, including Parkinson's disease, Dementia with Lewy bodies, and Multiple system atrophy. Although several kinases have been shown to be capable of phosphorylating alpha-synuclein in various model systems, the identity of the kinase that phosphorylates alpha-synuclein in the Lewy body remains unknown. One member of the Polo-like kinase family, PLK2, is a strong candidate for being the Lewy body kinase. To examine this possibility, we have used a combination of approaches, including biochemical, immunohistochemical, and in vivo multiphoton imaging techniques to study the consequences of PLK2 genetic deletion on alpha-synuclein phosphorylation in both the presynaptic terminal and preformed fibril-induced Lewy body pathology in mouse cortex. We find that PLK2 deletion reduces presynaptic terminal alpha-synuclein serine-129 phosphorylation, but has no effect on Lewy body phosphorylation levels. Serine-129 mutation to the phosphomimetic alanine or the unphosphorylatable analog aspartate does not change the rate of cell death of Lewy inclusion-bearing neurons in our in vivo multiphoton imaging paradigm, but PLK2 deletion does slow the rate of neuronal death. Our data indicate that inhibition of PLK2 represents a promising avenue for developing new therapeutics, but that the mechanism of neuroprotection by PLK2 inhibition is not likely due to reducing alpha-synuclein serine-129 phosphorylation and that the true Lewy body kinase still awaits discovery.


Subject(s)
Lewy Bodies/genetics , Presynaptic Terminals/metabolism , Protein Serine-Threonine Kinases/genetics , alpha-Synuclein/genetics , Animals , Humans , Lewy Bodies/metabolism , Lewy Bodies/pathology , Mice , Multiple System Atrophy/genetics , Multiple System Atrophy/pathology , Neurons/metabolism , Neurons/pathology , Parkinson Disease/genetics , Parkinson Disease/pathology , Phosphorylation/genetics , Presynaptic Terminals/pathology , Serine/genetics
15.
Acta Neuropathol Commun ; 8(1): 150, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32859276

ABSTRACT

It is necessary to develop an understanding of the specific mechanisms involved in alpha-synuclein aggregation and propagation to develop disease modifying therapies for age-related synucleinopathies, including Parkinson's disease and Dementia with Lewy Bodies. To adequately address this question, we developed a new transgenic mouse model of synucleinopathy that expresses human A53T SynGFP under control of the mouse prion protein promoter. Our characterization of this mouse line demonstrates that it exhibits several distinct advantages over other, currently available, mouse models. This new model allows rigorous study of the initial location of Lewy pathology formation and propagation in the living brain, and strongly suggests that aggregation begins in axonal structures with retrograde propagation to the cell body. This model also shows expeditious development of alpha-synuclein pathology following induction with small, in vitro-generated alpha-synuclein pre-formed fibrils (PFFs), as well as accelerated cell death of inclusion-bearing cells. Using this model, we found that aggregated alpha-synuclein somatic inclusions developed first in neurons, but later showed a second wave of inclusion formation in astrocytes. Interestingly, astrocytes appear to survive much longer after inclusion formation than their neuronal counterparts. This model also allowed careful study of peripheral-to-central spread of Lewy pathology after PFF injection into the hind limb musculature. Our results clearly show evidence of progressive, retrograde trans-synaptic spread of Lewy pathology through known neuroanatomically connected pathways in the motor system. As such, we have developed a promising tool to understand the biology of neurodegeneration associated with alpha-synuclein aggregation and to discover new treatments capable of altering the neurodegenerative disease course of synucleinopathies.


Subject(s)
Brain/pathology , Protein Transport/physiology , Synucleinopathies/pathology , alpha-Synuclein/metabolism , Animals , Astrocytes/pathology , Axons/pathology , Disease Models, Animal , Female , Humans , Lewy Bodies/metabolism , Lewy Bodies/pathology , Male , Mice , Mice, Transgenic , Neurons/pathology
16.
Sci Rep ; 9(1): 10919, 2019 07 29.
Article in English | MEDLINE | ID: mdl-31358782

ABSTRACT

Alpha-synuclein is a presynaptic protein that forms abnormal cytoplasmic aggregates in Lewy body disorders. Although nuclear alpha-synuclein localization has been described, its function in the nucleus is not well understood. We demonstrate that alpha-synuclein modulates DNA repair. First, alpha-synuclein colocalizes with DNA damage response components within discrete foci in human cells and mouse brain. Removal of alpha-synuclein in human cells leads to increased DNA double-strand break (DSB) levels after bleomycin treatment and a reduced ability to repair these DSBs. Similarly, alpha-synuclein knock-out mice show increased neuronal DSBs that can be rescued by transgenic reintroduction of human alpha-synuclein. Alpha-synuclein binds double-stranded DNA and helps to facilitate the non-homologous end-joining reaction. Using a new, in vivo imaging approach that we developed, we find that serine-129-phosphorylated alpha-synuclein is rapidly recruited to DNA damage sites in living mouse cortex. We find that Lewy inclusion-containing neurons in both mouse model and human-derived patient tissue demonstrate increased DSB levels. Based on these data, we propose a model whereby cytoplasmic aggregation of alpha-synuclein reduces its nuclear levels, increases DSBs, and may contribute to programmed cell death via nuclear loss-of-function. This model could inform development of new treatments for Lewy body disorders by targeting alpha-synuclein-mediated DNA repair mechanisms.


Subject(s)
Brain/metabolism , Lewy Body Disease/metabolism , Neurons/metabolism , Parkinson Disease/metabolism , alpha-Synuclein/physiology , Animals , Brain/pathology , Cells, Cultured , DNA Breaks, Double-Stranded , DNA End-Joining Repair , Humans , Lewy Bodies/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/pathology
17.
Dev Biol ; 453(2): 130-140, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31102591

ABSTRACT

The global mechanisms that regulate and potentially coordinate cell proliferation & death in developing neural regions are not well understood. In particular, it is not clear how or whether clonal relationships between neural progenitor cells and their progeny influence the growing brain. We have developed an approach using Brainbow in the developing zebrafish to visualize and follow multiple clones of related cells in vivo over time. This allows for clear visualization of many dividing clones of cells, deep in proliferating brain regions. As expected, in addition to undergoing interkinetic nuclear migration and cell division, cells also periodically undergo apoptosis. Interestingly, cell death occurs in a non-random manner: clonally related cells are more likely to die in a progressive fashion than cells from different clones. Multiple members of an individual clone die while neighboring clones appear healthy and continue to divide. Our results suggest that clonal relationships can influence cellular fitness and survival in the developing nervous system, perhaps through a competitive mechanism whereby clones of cells are competing with other clones. Clonal cell competition may help regulate neuronal proliferation in the vertebrate brain.


Subject(s)
Brain/cytology , Brain/embryology , Cell Lineage , Time-Lapse Imaging , Zebrafish/embryology , Animals , Apoptosis , Cell Death , Cell Division , Clone Cells , Color , Time Factors
18.
J Neurosci ; 36(28): 7415-27, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27413152

ABSTRACT

UNLABELLED: Pathologic inclusions define α-synucleinopathies that include Parkinson's disease (PD). The most common genetic cause of PD is the G2019S LRRK2 mutation that upregulates LRRK2 kinase activity. However, the interaction between α-synuclein, LRRK2, and the formation of α-synuclein inclusions remains unclear. Here, we show that G2019S-LRRK2 expression, in both cultured neurons and dopaminergic neurons in the rat substantia nigra pars compact, increases the recruitment of endogenous α-synuclein into inclusions in response to α-synuclein fibril exposure. This results from the expression of mutant G2019S-LRRK2, as overexpression of WT-LRRK2 not only does not increase formation of inclusions but reduces their abundance. In addition, treatment of primary mouse neurons with LRRK2 kinase inhibitors, PF-06447475 and MLi-2, blocks G2019S-LRRK2 effects, suggesting that the G2019S-LRRK2 potentiation of inclusion formation depends on its kinase activity. Overexpression of G2019S-LRRK2 slightly increases, whereas WT-LRRK2 decreases, total levels of α-synuclein. Knockdown of total α-synuclein with potent antisense oligonucleotides substantially reduces inclusion formation in G2019S-LRRK2-expressing neurons, suggesting that LRRK2 influences α-synuclein inclusion formation by altering α-synuclein levels. These findings support the hypothesis that G2019S-LRRK2 may increase the progression of pathological α-synuclein inclusions after the initial formation of α-synuclein pathology by increasing a pool of α-synuclein that is more susceptible to forming inclusions. SIGNIFICANCE STATEMENT: α-Synuclein inclusions are found in the brains of patients with many different neurodegenerative diseases. Point mutation, duplication, or triplication of the α-synuclein gene can all cause Parkinson's disease (PD). The G2019S mutation in LRRK2 is the most common known genetic cause of PD. The interaction between G2019S-LRRK2 and α-synuclein may uncover new mechanisms and targets for neuroprotection. Here, we show that expression of G2019S-LRRK2 increases α-synuclein mobility and enhances aggregation of α-synuclein in primary cultured neurons and in dopaminergic neurons of the substantia nigra pars compacta, a susceptible brain region in PD. Potent LRRK2 kinase inhibitors, which are being developed for clinical use, block the increased α-synuclein aggregation in G2019S-LRRK2-expressing neurons. These results demonstrate that α-synuclein inclusion formation in neurons can be blocked and that novel therapeutic compounds targeting this process by inhibiting LRRK2 kinase activity may slow progression of PD-associated pathology.


Subject(s)
Inclusion Bodies/pathology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation/genetics , Neurons/metabolism , Transcytosis/physiology , alpha-Synuclein/metabolism , Animals , Gene Expression Regulation/genetics , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oligoribonucleotides, Antisense/pharmacology , Photobleaching , Rats , Synucleins/metabolism , Transcytosis/genetics , Tubulin/metabolism , Voltage-Dependent Anion Channels/genetics , Voltage-Dependent Anion Channels/metabolism
19.
PLoS One ; 10(6): e0128510, 2015.
Article in English | MEDLINE | ID: mdl-26035833

ABSTRACT

The curry spice curcumin plays a protective role in mouse models of neurodegenerative diseases, and can also directly modulate aggregation of α-synuclein protein in vitro, yet no studies have described the interaction of curcumin and α-synuclein in genetic synucleinopathy mouse models. Here we examined the effect of chronic and acute curcumin treatment in the Syn-GFP mouse line, which overexpresses wild-type human α-synuclein protein. We discovered that curcumin diet intervention significantly improved gait impairments and resulted in an increase in phosphorylated forms of α-synuclein at cortical presynaptic terminals. Acute curcumin treatment also caused an increase in phosphorylated α-synuclein in terminals, but had no direct effect on α-synuclein aggregation, as measured by in vivo multiphoton imaging and Proteinase-K digestion. Using LC-MS/MS, we detected ~5 ng/mL and ~12 ng/mL free curcumin in the plasma of chronic or acutely treated mice, with a glucuronidation rate of 94% and 97%, respectively. Despite the low plasma levels and extensive metabolism of curcumin, these results show that dietary curcumin intervention correlates with significant behavioral and molecular changes in a genetic synucleinopathy mouse model that mimics human disease.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Behavior, Animal/drug effects , Curcumin/pharmacology , Dementia/drug therapy , Lewy Bodies/drug effects , Motor Activity/drug effects , alpha-Synuclein/physiology , Animals , Blotting, Western , Chromatography, Liquid , Dementia/pathology , Female , Humans , Immunoenzyme Techniques , Lewy Bodies/pathology , Male , Mice , Mice, Transgenic , Phosphorylation/drug effects , Tandem Mass Spectrometry
20.
Nat Genet ; 47(6): 579-81, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25938945

ABSTRACT

Primary familial brain calcification (PFBC) is a neurological disease characterized by calcium phosphate deposits in the basal ganglia and other brain regions and has thus far been associated with SLC20A2, PDGFB or PDGFRB mutations. We identified in multiple families with PFBC mutations in XPR1, a gene encoding a retroviral receptor with phosphate export function. These mutations alter phosphate export, implicating XPR1 and phosphate homeostasis in PFBC.


Subject(s)
Brain Diseases, Metabolic, Inborn/genetics , Calcinosis/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, Virus/genetics , DNA Mutational Analysis , Female , Genetic Association Studies , Genetic Predisposition to Disease , HEK293 Cells , Humans , Lod Score , Male , Middle Aged , Mutation, Missense , Neurodegenerative Diseases/genetics , Pedigree , Xenotropic and Polytropic Retrovirus Receptor
SELECTION OF CITATIONS
SEARCH DETAIL