Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Inst Mech Eng H ; 232(12): 1182-1195, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30387688

ABSTRACT

Around the world, over 400 million people suffer from diabetes. In a chronic diabetic condition, the skin underneath the foot often becomes extremely soft and brittle, resulting in the development of foot ulcers. In literature, a plethora of footwear designs have been developed to reduce the induced stresses on a diabetic foot and to consequently prevent the incidences of foot ulcers. However, to date, no insole design exists which can handle post-ulcer diabetic foot conditions without hindering the mobility of the patients. In the current work, a novel custom insole design with arch support and ulcer isolations was tested for effective stress reduction in a diabetic foot with ulcers using finite element modeling. A full-scale model of the foot was developed with ulcers of different geometries and sizes at the heel and metatarsal regions of the foot. The stresses at the ulcer locations were quantified for standing and walking with and without the novel custom insole model. The effect of material properties of the insole on the ulcer stress reduction was quantified extensively. Also, the effectivity of a novel synthetic skin material as the insole material was tested for stress offloading at the ulcers and the rest of the foot. From the analyses, peak stress reductions were observed at the ulcers up to 91.5% due to the ulcer isolation in the novel custom insole design and the skin-like material. Specifically, the ulcer isolation feature in the insole was found to be approximately 25% more effective in peak stress reduction for commonly occurring ulcers with irregular geometry, over the tested regular circular ulcer geometry. Also, a threshold material stiffness was found for the custom insole, below which the peak stresses at the ulcers did not decrease any further. Based on this information, a working prototype of the custom insole was developed with custom ulcer isolations, which will be subjected to further testing. The results of this study would inform better custom insole designing and material selection for post-ulcer diabetic conditions, with effective stress reduction at the ulcers, and the possibilities of preventing further ulceration.


Subject(s)
Diabetic Foot/therapy , Shoes , Equipment Design , Finite Element Analysis , Foot , Humans , Stress, Mechanical
2.
IEEE Rev Biomed Eng ; 11: 165-176, 2018.
Article in English | MEDLINE | ID: mdl-29994368

ABSTRACT

Suturing is an acquired skill which is based on a surgeon's experience. To date, no two sutures are the same with respect to the type of knot, tension, or suture material. With advancement in medical technologies, robotic suturing is becoming more and more important to operate on complex and difficult to reach internal surgical sites. While it is very difficult to translate a surgeon's suturing expertise to an automated environment, computational models could be employed to estimate baseline suture force requirements for a given wound shape, size, and suture material, which could be subsequently processed by a robot. In the literature, there have been few attempts to characterize wound closure and suture mechanics using simple two- and three-dimensional computational models. Single and multiple skin layers (epidermis, dermis, and hypodermis) and tissues with different wound geometries and sizes have been simulated under simple wound flap displacements to estimate suture force requirements. Also, recently, sutures were modeled to simulate a realistic wound closure via suture pulling, and skin prestress effect due to the natural tension of skin was incorporated in a few models to understand its effects on wound closure mechanics. An extensive review of this literature on computational modeling of wound suture would provide valuable insights into the areas in which further research work is required. Discussion of various computational challenges in modeling sutures in a numerical environment will help in better understanding the roadblocks and the required advancements in suture modeling.


Subject(s)
Computer Simulation , Models, Biological , Suture Techniques/education , Finite Element Analysis , Humans , Robotic Surgical Procedures
3.
Nanoscale ; 10(1): 403-415, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29219154

ABSTRACT

Experimentally synthesized carbon nanotube (CNTs) junctions (either single or with 2D/3D CNT network topology) are expected to have random orientation of defect sites (non-hexagonal rings) around the junction. This random and irregular nature of the junction topology and defect characteristics is expected to affect their strength and durability as well as impact the associated mesoscopic and macroscopic properties. On the contrary, theoretical and computational studies often investigate structure-property relationships of pristine and regular junctions of carbon nanostructures. In this study, we developed a computational framework to model a variety of junction structures between CNTs with arbitrary spatial (orientation and degree of overlap) and intrinsic (chirality) specifications. The developed computational model also has the ability to tune the degree of topological defects around the junction via a variety of defect annihilation approaches. Our method makes use of the primal/dual meshing concept, where the development and manipulation of the junction nodes occur using triangular meshes (primal mesh), which is eventually converted to its dual mesh (honeycomb mesh) to render a fully covalently bonded CNT junction. Here each carbon atom has 3 bonded neighbors (mimicking sp2 hybridization). Under a given set of CNT orientation, overlap and chirality specifications, the approach creates a number of CNT junction configurations with varying degrees of energetic stability, offering an opportunity to investigate the effect of topological arrangement of defects around the junction on mechanical, electrical and thermal properties. In addition, it is shown via few examples that the discussed methodology can easily be extended to create multi-junction nanotube clusters, multi-wall nanotube junctions, as well as true 3D random network structures.

4.
J Biomech Eng ; 139(10)2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28696484

ABSTRACT

Pelvic organ prolapse (POP), downward descent of the pelvic organs resulting in a protrusion of the vagina, is a highly prevalent condition, responsible for 300,000 surgeries in the U.S. annually. Rectocele, a posterior vaginal wall (PVW) prolapse of the rectum, is the second most common type of POP after cystocele. A rectocele usually manifests itself along with other types of prolapse with multicompartment pelvic floor defects. To date, the specific mechanics of rectocele formation are poorly understood, which does not allow its early stage detection and progression prediction over time. Recently, with the advancement of imaging and computational modeling techniques, a plethora of finite element (FE) models have been developed to study vaginal prolapse from different perspectives and allow a better understanding of dynamic interactions of pelvic organs and their supporting structures. So far, most studies have focused on anterior vaginal prolapse (AVP) (or cystocele) and limited data exist on the role of pelvic muscles and ligaments on the development and progression of rectocele. In this work, a full-scale magnetic resonance imaging (MRI) based three-dimensional (3D) computational model of the female pelvic anatomy, comprising the vaginal canal, uterus, and rectum, was developed to study the effect of varying degrees (or sizes) of rectocele prolapse on the vaginal canal for the first time. Vaginal wall displacements and stresses generated due to the varying rectocele size and average abdominal pressures were estimated. Considering the direction pointing from anterior to posterior side of the pelvic system as the positive Y-direction, it was found that rectocele leads to negative Y-direction displacements, causing the vaginal cross section to shrink significantly at the lower half of the vaginal canal. Besides the negative Y displacements, the rectocele bulging was observed to push the PVW downward toward the vaginal hiatus, exhibiting the well-known "kneeling effect." Also, the stress field on the PVW was found to localize at the upper half of the vaginal canal and shift eventually to the lower half with increase in rectocele size. Additionally, clinical relevance and implications of the results were discussed.


Subject(s)
Patient-Specific Modeling , Pelvic Organ Prolapse/complications , Rectocele/complications , Rectocele/pathology , Vagina/pathology , Adult , Female , Finite Element Analysis , Humans , Magnetic Resonance Imaging , Nonlinear Dynamics , Rectocele/diagnostic imaging , Vagina/diagnostic imaging
5.
Proc Inst Mech Eng H ; 231(1): 80-91, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28097936

ABSTRACT

Skin injuries are the most common type of injuries occurring in day-to-day life. A skin injury usually manifests itself in the form of a wound or a cut. While a shallow wound may heal by itself within a short time, deep wounds require surgical interventions such as suturing for timely healing. To date, suturing practices are based on a surgeon's experience and may vary widely from one situation to another. Understanding the mechanics of wound closure and suturing of the skin is crucial to improve clinical suturing practices and also to plan automated robotic surgeries. In the literature, phenomenological two-dimensional computational skin models have been developed to study the mechanics of wound closure. Additionally, the effect of skin pre-stress (due to the natural tension of the skin) on wound closure mechanics has been studied. However, in most of these analyses, idealistic two-dimensional skin geometries, materials and loads have been assumed, which are far from reality, and would clearly generate inaccurate quantitative results. In this work, for the first time, a biofidelic human skin tissue phantom was developed using a two-part silicone material. A wound was created on the phantom material and sutures were placed to close the wound. Uniaxial mechanical tests were carried out on the phantom specimens to study the effect of varying wound size, quantity, suture and pre-stress on the mechanical behavior of human skin. Also, the average mechanical behavior of the human skin surrogate was characterized using hyperelastic material models, in the presence of a wound and sutures. To date, such a robust experimental study on the effect of injury and sutures on human skin mechanics has not been attempted. The results of this novel investigation will provide important guidelines for surgical planning and validation of results from computational models in the future.


Subject(s)
Phantoms, Imaging , Skin/injuries , Biomechanical Phenomena , Dermatologic Surgical Procedures , Humans , Models, Biological , Nonlinear Dynamics , Skin/physiopathology , Suture Techniques , Wounds and Injuries/physiopathology , Wounds and Injuries/surgery
6.
Cardiovasc Eng Technol ; 7(2): 170-81, 2016 06.
Article in English | MEDLINE | ID: mdl-26857014

ABSTRACT

Engineered valvular tissues are cultured dynamically, and involve specimen movement. We previously demonstrated that oscillatory shear stresses (OSS) under combined steady flow and specimen cyclic flexure (flex-flow) promote tissue formation. However, localized efficiency of specimen mass transport is also important in the context of cell viability within the growing tissues. Here, we investigated the delivery of two essential species for cell survival, glucose and oxygen, to 3-dimensional (3D) engineered valvular tissues. We applied a convective-diffusive model to characterize glucose and oxygen mass transport with and without valve-like specimen flexural movement. We found the mass transport effects for glucose and oxygen to be negligible for scaffold porosities typically present during in vitro experiments and non-essential unless the porosity was unusually low (<40%). For more typical scaffold porosities (75%) however, we found negligible variation in the specimen mass fraction of glucose and oxygen in both non-moving and moving constructs (p > 0.05). Based on this result, we conducted an experiment using bone marrow stem cell (BMSC)-seeded scaffolds under Pulsatile flow-alone states to permit OSS without any specimen movement. BMSC-seeded specimen collagen from the pulsatile flow and flex-flow environments were subsequently found to be comparable (p > 0.05) and exhibited some gene expression similarities. We conclude that a critical magnitude of fluid-induced, OSS created by either pulsatile flow or flex-flow conditions, particularly when the oscillations are physiologically-relevant, is the direct, principal stimulus that promotes engineered valvular tissues and its phenotype, whereas mass transport benefits derived from specimen movement are minimal.


Subject(s)
Bioreactors , Heart Valves , Tissue Engineering/methods , Animals , Biomarkers/analysis , Biomarkers/metabolism , Cells, Cultured , Collagen/analysis , Collagen/metabolism , Gene Expression Profiling , Glucose/metabolism , Heart Valves/chemistry , Heart Valves/cytology , Heart Valves/metabolism , Heart Valves/physiology , Hydrodynamics , Oxygen/metabolism , Porosity , Sheep
7.
Article in English | MEDLINE | ID: mdl-26732347

ABSTRACT

Treatment of anterior vaginal prolapse (AVP), suffered by over 500,000 women in the USA, is a challenge in urogynecology because of the poorly understood mechanics of AVP. Recently, computational modeling combined with finite element method has been used to model AVP through the study of pelvic floor muscle and connective tissue impairments on the anterior vaginal wall (AVW). Also, the effects of pelvic organ displacements on the AVW were studied numerically. In our current work, an MRI-based full-scale biofidelic computational model of the female pelvic system composed of the urinary bladder, vaginal canal, and the uterus was developed, and a novel finite element method framework was employed to simulate vaginal tissue stiffening and also bladder filling due to expansion for the first time. A mesh convergence study was conducted to choose a computationally efficient mesh, and a non-linear hyperelastic Yeoh's material model was adopted for the study. The AVW displacements, mechanical stresses, and strains were estimated at varying degrees of bladder fills and vaginal tissue stiffening. Both bladder filling and vaginal stiffening were found to increase the stress concentration on the AVW with varying trends, which have been discussed in detail in the paper. To our knowledge, this study is the first to estimate the individual and combined effects of bladder filling and vaginal tissue stiffening due to prolapse on the AVW. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Computer Simulation , Cystocele , Models, Biological , Pelvic Organ Prolapse , Urinary Bladder , Vagina , Biomechanical Phenomena , Cystocele/pathology , Cystocele/physiopathology , Female , Finite Element Analysis , Humans , Pelvic Organ Prolapse/diagnostic imaging , Pelvic Organ Prolapse/pathology , Pelvic Organ Prolapse/physiopathology , Urinary Bladder/anatomy & histology , Urinary Bladder/diagnostic imaging , Urinary Bladder/physiology , Vagina/diagnostic imaging , Vagina/pathology , Vagina/physiopathology
8.
Proc Inst Mech Eng H ; 230(2): 111-21, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26701867

ABSTRACT

Elevated intracranial pressure is a major contributor to morbidity and mortality in severe head injuries. Wall shear stresses in the artery can be affected by increased intracranial pressures and may lead to the formation of cerebral aneurysms. Earlier research on cerebral arteries and aneurysms involves using constant mean intracranial pressure values. Recent advancements in intracranial pressure monitoring techniques have led to measurement of the intracranial pressure waveform. By incorporating a time-varying intracranial pressure waveform in place of constant intracranial pressures in the analysis of cerebral arteries helps in understanding their effects on arterial deformation and wall shear stress. To date, such a robust computational study on the effect of increasing intracranial pressures on the cerebral arterial wall has not been attempted to the best of our knowledge. In this work, fully coupled fluid-structure interaction simulations are carried out to investigate the effect of the variation in intracranial pressure waveforms on the cerebral arterial wall. Three different time-varying intracranial pressure waveforms and three constant intracranial pressure profiles acting on the cerebral arterial wall are analyzed and compared with specified inlet velocity and outlet pressure conditions. It has been found that the arterial wall experiences deformation depending on the time-varying intracranial pressure waveforms, while the wall shear stress changes at peak systole for all the intracranial pressure profiles.


Subject(s)
Cerebral Arteries/physiology , Cerebrovascular Circulation/physiology , Intracranial Pressure/physiology , Models, Cardiovascular , Biomechanical Phenomena , Finite Element Analysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...