Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 606: 108-113, 2022 05 28.
Article in English | MEDLINE | ID: mdl-35339749

ABSTRACT

CD99 is a glycoprotein primarily expressed in immune cells. Physiologically, it is involved in the adhesion, migration, and development of immune cells. The presence of CD99 in the skin was first reported in 2016 and its function is yet to be determined. In this study, we aimed to understand the role of CD99 in the skin using normal human epidermal keratinocytes (NHEK). CD99 expression increased with the confluency of NHEK, while the CD99-high expressing NHEK lost their stem cell properties and played a role in barrier function. We characterized CD99-expressing NHEK as cells committed to early differentiation because they expressed early differentiation markers. However, the deficiency of CD99 in NHEK disrupted homeostasis and caused aberrant differentiation, as evidenced by larger cells with lesser Ki67 staining and higher expression of terminal differentiation markers. Hence, we propose that CD99 is involved in maintaining homeostasis and initiating early differentiation in the skin.


Subject(s)
12E7 Antigen , Epidermis , Keratinocytes , 12E7 Antigen/metabolism , Antigens, Differentiation/metabolism , Cell Differentiation , Cells, Cultured , Homeostasis , Humans , Keratinocytes/metabolism
2.
Nat Plants ; 3: 16206, 2016 Dec 22.
Article in English | MEDLINE | ID: mdl-28005058

ABSTRACT

In diploid organisms, phenotypic traits are often biased by effects known as Mendelian dominant-recessive interactions between inherited alleles. Phenotypic expression of SP11 alleles, which encodes the male determinants of self-incompatibility in Brassica rapa, is governed by a complex dominance hierarchy1-3. Here, we show that a single polymorphic 24 nucleotide small RNA, named SP11 methylation inducer 2 (Smi2), controls the linear dominance hierarchy of the four SP11 alleles (S44 > S60 > S40 > S29). In all dominant-recessive interactions, small RNA variants derived from the linked region of dominant SP11 alleles exhibited high sequence similarity to the promoter regions of recessive SP11 alleles and acted in trans to epigenetically silence their expression. Together with our previous study4, we propose a new model: sequence similarity between polymorphic small RNAs and their target regulates mono-allelic gene expression, which explains the entire five-phased linear dominance hierarchy of the SP11 phenotypic expression in Brassica.

SELECTION OF CITATIONS
SEARCH DETAIL
...