Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Luminescence ; 33(3): 616-624, 2018 May.
Article in English | MEDLINE | ID: mdl-29424036

ABSTRACT

We have developed a bioluminescence-based non-destructive cytotoxicity assay in which cell viability and membrane damage are simultaneously evaluated using Emerald luciferase (ELuc) and endoplasmic reticulum (ER)-targeted copepod luciferase (GLuc-KDEL), respectively, by using multi-integrase mouse artificial chromosome (MI-MAC) vector. We have demonstrated that the time-dependent concentration response curves of ELuc luminescence intensity and WST-1 assay, and GLuc-KDEL luminescence intensity and lactate dehydrogenase (LDH) activity in the culture medium accompanied by cytotoxicity show good agreement in toxicant-treated ELuc- and GLuc-KDEL-expressing HepG2 stable cell lines. We have clarified that the increase of GLuc-KDEL luminescence intensity in the culture medium reflects the type of cell death, including necrosis and late apoptosis, but not early apoptosis. We have also uncovered a strong correlation between GLuc-KDEL luminescence intensity in the culture medium and the extracellular release of high mobility group box 1 (HMGB1), a representative damage-associated molecular pattern (DAMP) molecule. The bioluminescence measurement assay using ELuc and GLuc-KDEL developed in this study can simultaneously monitor cell viability and membrane damage, respectively, and the increase of GLuc-KDEL luminescence intensity in the culture medium accompanied by the increase of cytotoxicity is an index of necrosis and late apoptosis associated with the extracellular release of DAMP molecules.


Subject(s)
Luminescent Measurements/methods , Toxicity Tests/methods , Animals , Cell Death , Cell Survival/drug effects , Coleoptera/genetics , Colorimetry/methods , Copepoda/genetics , Culture Media, Conditioned/chemistry , HMGB1 Protein/metabolism , Hep G2 Cells , Humans , L-Lactate Dehydrogenase/metabolism , Luciferases/genetics , Recombinant Proteins/genetics
2.
Sci Rep ; 7(1): 12739, 2017 10 06.
Article in English | MEDLINE | ID: mdl-28986519

ABSTRACT

Chromosome engineering techniques including gene insertion, telomere-associated truncation and microcell-mediated chromosome transfer (MMCT) are powerful tools for generation of humanised model animal, containing megabase-sized genomic fragments. However, these techniques require two cell lines: homologous recombination (HR)-proficient DT40 cells for chromosome modification, and CHO cells for transfer to recipient cells. Here we show an improved technique using a combination of CRISPR/Cas9-induced HR in CHO and mouse A9 cells without DT40 cells following MMCT to recipient cells. Transgene insertion was performed in CHO cells with the insertion of enhanced green fluorescence protein (EGFP) using CRISPR/Cas9 and a circular targeting vector containing two 3 kb HR arms. Telomere-associated truncation was performed in CHO cells using CRISPR/Cas9 and a linearised truncation vector containing a single 7 kb HR arm at the 5' end, a 1 kb artificial telomere at the 3' end. At least 11% and 6% of the targeting efficiency were achieved for transgene insertion and telomere-associated truncation, respectively. The transgene insertion was also confirmed in A9 cells (29%). The modified chromosomes were transferrable to other cells. Thus, this CHO and A9 cell-mediated chromosome engineering using the CRISPR/Cas9 for direct transfer of the modified chromosome is a rapid technique that will facilitate chromosome manipulation.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Chromosomes, Human/genetics , Genetic Engineering , Mutagenesis, Insertional/genetics , Transgenes , Animals , CHO Cells , Cell Line, Tumor , Cricetinae , Cricetulus , Gene Targeting , Genetic Vectors/metabolism , Humans , Melanoma, Experimental/pathology , Mice , Plasmids/genetics , Telomere
3.
Mol Ther Nucleic Acids ; 4: e272, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26670279

ABSTRACT

The development of a safeguard system to remove tumorigenic cells would allow safer clinical applications of stem cells for the treatment of patients with an intractable disease including genetic disorders. Such safeguard systems should not disrupt the host genome and should have long-term stability. Here, we attempted to develop a tumor-suppressing mammalian artificial chromosome containing a safeguard system that uses the immune rejection system against allogeneic tissue from the host. For proof-of-concept of the safeguard system, B16F10 mouse melanoma cells expressing the introduced H2-K(d) major histocompatibility complex (MHC class I)-allogenic haplotype were transplanted into recipient C57BL/6J mice expressing MHC H2-K(b). Subcutaneous implantation of B16F10 cells into C57BL/6J mice resulted in high tumorigenicity. The volume of tumors derived from B16F10 cells expressing allogenic MHC H2-K(d) was decreased significantly (P < 0.01). Suppression of MHC H2-K(d)-expressing tumors in C57BL/6J mice was enhanced by immunization with MHC H2-K(d)-expressing splenocytes (P < 0.01). These results suggest that the safeguard system is capable of suppressing tumor formation by the transplanted cells.

4.
BMC Biotechnol ; 15: 58, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-26088202

ABSTRACT

BACKGROUND: Human artificial chromosome (HAC) vectors have some unique characteristics as compared with conventional vectors, carrying large transgenes without size limitation, showing persistent expression of transgenes, and existing independently from host genome in cells. With these features, HACs are expected to be promising vectors for modifications of a variety of cell types. However, the method of introduction of HACs into target cells is confined to microcell-mediated chromosome transfer (MMCT), which is less efficient than other methods of vector introduction. Application of Measles Virus (MV) fusogenic proteins to MMCT instead of polyethylene glycol (PEG) has partly solved this drawback, whereas the tropism of MV fusogenic proteins is restricted to human CD46- or SLAM-positive cells. RESULTS: Here, we show that retargeting of microcell fusion by adding anti-Transferrin receptor (TfR) single chain antibodies (scFvs) to the extracellular C-terminus of the MV-H protein improves the efficiency of MV-MMCT to human fibroblasts which originally barely express both native MV receptors, and are therefore resistant to MV-MMCT. Efficacy of chimeric fusogenic proteins was evaluated by the evidence that the HAC, tagged with a drug-resistant gene and an EGFP gene, was transferred from CHO donor cells into human fibroblasts. Furthermore, it was demonstrated that no perturbation of either the HAC status or the functions of transgenes was observed on account of retargeted MV-MMCT when another HAC carrying four reprogramming factors (iHAC) was transferred into human fibroblasts. CONCLUSIONS: Retargeted MV-MMCT using chimeric H protein with scFvs succeeded in extending the cell spectrum for gene transfer via HAC vectors. Therefore, this technology could facilitate the systematic cell engineering by HACs.


Subject(s)
Chromosomes, Artificial, Human/genetics , Measles virus/genetics , Viral Fusion Proteins/genetics , Animals , CHO Cells , Cell Line , Cricetinae , Cricetulus , Fibroblasts , Gene Transfer Techniques , Humans , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
5.
Cell Struct Funct ; 40(1): 51-9, 2015.
Article in English | MEDLINE | ID: mdl-25736016

ABSTRACT

Although most cell lines undergo mitotic arrest after prolonged exposure to microtubule inhibitors, some cells subsequently exit this state and become tetraploid. Among these cells, limited numbers of rodent cells are known to undergo multinucleation to generate multiple small independent nuclei, or micronuclei by prolonged colcemid treatment. Micronuclei are thought to be formed when cells shift to a pseudo G1 phase, during which the onset of chromosomal decondensation allows individual chromosomes distributed throughout the cell to serve as sites for the reassembly of nuclear membranes. To better define this process, we used long-term live cell imaging to observe micronucleation induced in mouse A9 cells by treating with the microtubule inhibitor colcemid. Our observations confirm that nuclear envelope formation occurs when mitotic-arrested cells shift to a pseudo G1 phase and adopt a tetraploid state, accompanied by chromosome decondensation. Unexpectedly, only a small number of cells containing large micronuclei were formed. We found that tetraploid micronucleated cells proceeded through an additional cell cycle, shifting to a pseudo G1 phase and forming octoploid micronucleated cells that were smaller and more numerous compared with the tetraploid micronucleated cells. Our data suggest that micronucleation occur when cells shift from mitotic arrest to a pseudo G1 phase, and demonstrate that, rather than being a single event, micronucleation is an inducible recurrent process that leads to the formation of progressively smaller and more numerous micronuclei.


Subject(s)
Cell Cycle/drug effects , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Microtubules/drug effects , Animals , CHO Cells , Chromosomes/drug effects , Cricetinae , Cricetulus , Demecolcine/pharmacology , G1 Phase/drug effects , Humans , Mice , Mitosis/drug effects , Molecular Imaging , Nuclear Envelope/drug effects , Nuclear Envelope/metabolism , Ploidies
6.
Cytotechnology ; 65(5): 803-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23494082

ABSTRACT

Microcell-mediated chromosome transfer (MMCT) technology enables a single and intact mammalian chromosome or megabase-sized chromosome fragments to be transferred from donor to recipient cells. The conventional MMCT method is performed immediately after the purification of microcells. The timing of the isolation of microcells and the preparation of recipient cells is very important. Thus, ready-made microcells can improve and simplify the process of MMCT. Here, we established a cryopreservation method to store microcells at -80 °C, and compared these cells with conventionally- (immediately-) prepared cells with respect to the efficiency of MMCT and the stability of a human artificial chromosome (HAC) transferred to human HT1080 cells. The HAC transfer in microcell hybrids was confirmed by FISH analysis. There was no significant difference between the two methods regarding chromosome transfer efficiency and the retention rate of HAC. Thus, cryopreservation of ready-to-use microcells provides an improved and simplified protocol for MMCT.

SELECTION OF CITATIONS
SEARCH DETAIL
...