Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Pharm Bull (Tokyo) ; 71(3): 198-205, 2023.
Article in English | MEDLINE | ID: mdl-36858524

ABSTRACT

The purpose of the present study was to evaluate bitterness suppression effect of adenylic acid (AMP) as a nucleotide-derived nutrient enhancer on a bitter commercial drug. In the present study, we evaluated peripheral bitterness inhibition effect of AMP on the trimethoprim (TMP) and sulfamethoxazole (SMZ) combination formulation based on taste sensor. The taste sensor values of TMP solutions with different concentrations show large sensor output in correlation with the concentration of TMP, whereas no sensor output in shown for the SMZ solutions. Therefore, the bitterness of this combination formulation is mainly due to TMP. We evaluated the TMP bitterness inhibitory effects of AMP, sodium salt of AMP (AMP Na; sodium adenylate), sodium salt of GMP (GMP Na; sodium guanylate), and sodium salt of inosine monophosphate (IMP Na; sodium inosinate), and found that only AMP displayed very effective bitterness inhibition. MarvinSketch analysis revealed that potential electrostatic interaction between cationized TMP and anionized forms (II and III) of AMP may cause bitterness suppression. 1H-NMR study suggested an interaction of TMP and AMP molecules based on chemical shift perturbations and an interaction between the phosphate group of AMP and amino group of TMP. Lastly, conventional elution analysis simulating oral cavity capacity for up to one minute were performed using commercial TMP/SMZ combination granules. The sensor output gradually increased up to 60 s. The addition of AMP solution to the eluted sample at 60 s significantly decreased the bitterness sensor output of the eluted sample.


Subject(s)
Taste , Trimethoprim, Sulfamethoxazole Drug Combination , Adenosine Monophosphate , Anti-Bacterial Agents , Drug Combinations
2.
Chem Pharm Bull (Tokyo) ; 71(2): 148-153, 2023.
Article in English | MEDLINE | ID: mdl-36724977

ABSTRACT

This study aimed to evaluate the bitterness of famotidine (FAM) combined with each of three non-steroidal anti-inflammatory drugs (NSAIDs): ibuprofen (IBU), flurbiprofen (FLU), and naproxen (NAP), which have potential as fixed-dose combination (FDC) drugs. We evaluated the bitterness of FAM and each NSAID by taste sensor AN0 and C00, respectively. FAM showed high sensor output representing sensitivity to bitterness, whereas three NSAIDs did not show large sensor output, suggesting that the bitterness intensities of three NSAIDs were lower than that of FAM. The bitterness of FAM on sensor AN0 was suppressed in a concentration-dependent manner when mixed with IBU, FLU, or NAP. Among three NSAIDs, IBU most effectively inhibited bitterness on sensor output, and the gustatory sensation test confirmed that adding IBU to FAM reduced the bitterness of FAM in a concentration-dependent manner. MarvinSketch confirmed that the drugs were mostly present in an ionic solution when FAM was mixed with NSAIDs. The 1H-NMR spectroscopy analysis also revealed the presence of electrostatic interactions between FAM and NSAIDs, suggesting that the electrostatic interaction between FAM and NSAIDs might inhibit the adsorption of FAM on the bitter taste sensor membrane, thereby masking the bitter taste.


Subject(s)
Flurbiprofen , Taste , Famotidine/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Ibuprofen/pharmacology , Naproxen
3.
Int J Mol Sci ; 22(21)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34769486

ABSTRACT

We previously reported that conjugates of antimicrobial peptide fragment analogues and poly (lactic-co-glycolic) acid (PLGA) enhance antimicrobial activity and that the conjugated micelle structure is an effective tool for antimicrobial drug delivery. In recent years, the delivery of antimicrobial peptides to targets for antimicrobial activity has attracted attention. In this study, we targeted Candida albicans, a causative organism of catheter-related bloodstream infections, which is refractory to antimicrobial agents and is currently a problem in medical practice. We evaluated the antifungal activity of CKR12 (a mutant fragment of the human cathelicidin peptide, LL-37)-PLGA-miconazole (MCZ) micelles using nanotechnology with MCZ delivery. The prepared CKR12-PLGA-MCZ micelles were characterised by measuring dynamic light scattering, zeta potential, dilution stability, and drug release. CKR12-PLGA-MCZ micelles showed higher antifungal activity than CKR12-PLGA micelles and MCZ solution. Furthermore, scanning and transmission electron microscopy suggested that CKR12-PLGA-MCZ micelles disrupted both cell wall and cell membrane of C. albicans. Our results revealed a synergistic effect of antifungal activity using a combination of antimicrobial peptide fragment analogues and MCZ, and that MCZ is a promising tool for the delivery to target microorganisms.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Candida albicans/drug effects , Candidiasis/drug therapy , Drug Delivery Systems/methods , Miconazole/pharmacology , Nanoparticles/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Antifungal Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Candidiasis/metabolism , Candidiasis/microbiology , Micelles , Miconazole/chemistry , Cathelicidins
4.
Int J Mol Sci ; 22(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34065861

ABSTRACT

Various peptides and their derivatives have been reported to exhibit antimicrobial activities. Although these activities have been examined against microorganisms, novel methods have recently emerged for conjugation of the biomaterials to improve their activities. Here, we prepared CKR12-PLGA, in which CKR12 (a mutated fragment of human cathelicidin peptide, LL-37) was conjugated with poly (lactic-co-glycolic) acid (PLGA), and compared the antimicrobial and antifungal activities of the conjugated peptide with those of FK13 (a small fragment of LL-37) and CKR12 alone. The prepared CKR12-PLGA was characterized by dynamic light scattering and measurement of the zeta potential, critical micellar concentration, and antimicrobial activities of the fragments and conjugate. Although CKR12 showed higher antibacterial activities than FK13 against Staphylococcus aureus and Escherichia coli, the antifungal activity of CKR12 was lower than that of FK13. CKR12-PLGA showed higher antibacterial activities against S. aureus and E. coli and higher antifungal activity against Candida albicans compared to those of FK13. Additionally, CKR12-PLGA showed no hemolytic activity in erythrocytes, and scanning and transmission electron microscopy suggested that CKR12-PLGA killed and disrupted the surface structure of microbial cells. Conjugation of antimicrobial peptide fragment analogues was a successful approach for obtaining increased microbial activity with minimized cytotoxicity.


Subject(s)
Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Anti-Infective Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/genetics , Candida albicans/drug effects , Candida albicans/growth & development , Candida albicans/ultrastructure , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli/ultrastructure , Humans , Microbial Sensitivity Tests , Microbial Viability/drug effects , Microscopy, Electron, Transmission , Mutation , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Staphylococcus aureus/ultrastructure , Cathelicidins
SELECTION OF CITATIONS
SEARCH DETAIL
...