Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(2): 2110-2119, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38141015

ABSTRACT

RNA and DNA delivery technologies using lipid nanoparticles (LNPs) have advanced significantly, as demonstrated by their successful application in mRNA vaccines. To date, commercially available RNA therapeutics include Onpattro, a 21 bp siRNA, and mRNA vaccines comprising 4300 nucleotides for COVID-19. However, a significant challenge remains in achieving efficient transfection, as the size of the delivered RNA and DNA increases. In contrast to RNA transfection, plasmid DNA (pDNA) transfection requires multiple steps, including cellular uptake, endosomal escape, nuclear translocation, transcription, and translation. The low transfection efficiency of large pDNA is a critical limitation in the development of artificial cells and their cellular functionalization. Here, we introduce polymer-lipid hybrid nanoparticles designed for efficient, large-sized pDNA transfection. We demonstrated that LNPs loaded with positively charged pDNA-polycation core nanoparticles exhibited a 4-fold increase in transfection efficiency for 15 kbp pDNA compared with conventional LNPs, which encapsulate a negatively charged pDNA-polycation core. Based on assessments of the size and internal structure of the polymer-lipid nanoparticles as well as hemolysis and cellular uptake analysis, we propose a strategy to enhance large-sized pDNA transfection using LNPs. This approach holds promise for accelerating the in vivo delivery of large-sized pDNA and advancing the development of artificial cells.


Subject(s)
Liposomes , Nanoparticles , Polyelectrolytes , Polymers , mRNA Vaccines , Transfection , DNA/chemistry , Plasmids/genetics , Nanoparticles/chemistry , RNA , Lipids/chemistry
2.
Biomater Sci ; 11(7): 2419-2426, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36752548

ABSTRACT

The function of liposomal drugs and cosmetics is not only controlled by the lipid composition/formulation, but also by the liposome size and internal structure/properties (uni- and multi-lamellae) and membrane rigid/fluidic properties. Although the preparation of liposomes using microfluidic devices offers precise size control and easy scale-up in a continuous manufacturing system, their lamellarity and physicochemical property differences have not been investigated. We therefore prepared different paclitaxel (PTX)-loaded liposomes by changing two process parameters and investigated their physicochemical properties. The liposome size and drug loading were modified by changing the initial lipid concentration and flow rate ratio (FRR) of the aqueous and ethanol phases introduced into the microfluidic channels. Small-angle X-ray scattering and transmission electron microscopy revealed that the liposomes comprised a uni- or multi-lamellar structure that could be controlled by changing the FRR and initial lipid concentration. We also found that these structural differences affected the drug release profiles. Furthermore, the dissolution kinetics of the latter half of the drug release test could be modulated by the membrane fluidity of the liposomes. These differences in the drug release rates were consistent with the results of the in vitro cell viability assay, confirming that the multilamellar liposomes showed milder activity than the PTX solution by allowing the extended release of PTX. Thus, we concluded that the preparation of liposomes using microfluidic devices allows the liposome size, DL%, and drug release profiles to be adjusted as required.


Subject(s)
Liposomes , Paclitaxel , Liposomes/chemistry , Drug Liberation , Paclitaxel/pharmacology , Lipids/chemistry , Lab-On-A-Chip Devices , Particle Size
3.
Nanoscale Adv ; 4(2): 532-545, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-36132700

ABSTRACT

Silver nanoparticles (AgNPs) are practically valuable in biological applications. However, no steady PEGylation has been established, which is essential for internal use in humans or animals. In this study, cyclic PEG (c-PEG) without any chemical inhomogeneity is physisorbed onto AgNPs to successfully PEGylate and drastically enhance the dispersion stability against physiological conditions, white light, and high temperature. In contrast, linear HO-PEG-OH and MeO-PEG-OMe do not confer stability to AgNPs, and HS-PEG-OMe, which is often used for gold nanoparticles, sulfidates the surface to considerably degrade the properties. TEM shows an essentially intact nanostructure of c-PEG-physisorbed AgNPs even after heating at 95 °C, while complete disturbance is observed for other AgNPs. Molecular weight- and concentration-dependent stabilization by c-PEG is investigated, and DLS and ζ-potential measurements prove the formation of a c-PEG layer on the surface of AgNPs. Furthermore, c-PEG-physisorbed AgNPs exhibit persistent antimicrobial activity and cytotoxicity.

4.
J Vis Exp ; (181)2022 03 22.
Article in English | MEDLINE | ID: mdl-35404350

ABSTRACT

The development of functional lipid nanoparticles (LNPs) is one of the major challenges in the field of drug delivery systems (DDS). Recently, LNP-based RNA delivery systems, namely, RNA-loaded LNPs have attracted attention for RNA therapy. In particular, mRNA-loaded LNP vaccines were approved to prevent COVID-19, thereby leading to the paradigm shift toward the development of next-generation nanomedicines. For the LNP-based nanomedicines, the LNP size is a significant factor in controlling the LNP biodistribution and LNP performance. Therefore, a precise LNP size control technique is indispensable for the LNP production process. Here, we report a protocol for size controlled LNP production using a microfluidic device, named iLiNP. siRNA loaded LNPs are also produced using the iLiNP device and evaluated by in vitro experiment. Representative results are shown for the LNP size, including siRNA-loaded LNPs, Z-potential, siRNA encapsulation efficiency, cytotoxicity, and target gene silencing activity.


Subject(s)
COVID-19 , Nanoparticles , Humans , Lab-On-A-Chip Devices , Lipids , Liposomes , RNA, Small Interfering/metabolism , Tissue Distribution
5.
J Control Release ; 344: 80-96, 2022 04.
Article in English | MEDLINE | ID: mdl-35183654

ABSTRACT

In 2021, mRNA vaccines against COVID-19 were approved by the Food and Drug Administration. mRNA vaccines are important for preventing severe COVID-19 and returning to normal life. The development of RNA-delivery technology, including mRNA vaccines, has been investigated worldwide for ~30 years. Lipid nanoparticles (LNPs) are a breakthrough technology that stably delivers RNA to target organs, and RNA-loaded LNP-based nanomedicines have been studied for the development of vaccines and nanomedicines for RNA-, gene-, and cell-based therapies. Recently, microfluidic devices and technologies have attracted attention for the production of LNPs, particularly RNA-loaded LNPs. Microfluidics provides many advantages for RNA-loaded LNP production, including precise LNP size controllability, high reproducibility, high-throughput optimization of LNP formulation, and continuous LNP-production processes. In this review, we summarize microfluidic-based RNA-loaded LNP production and its applications in RNA-based therapy and genome editing.


Subject(s)
COVID-19 , Nanoparticles , COVID-19 Vaccines , Humans , Lipids , Liposomes , Microfluidics , RNA, Small Interfering/genetics , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...