Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Front Hum Neurosci ; 17: 1271158, 2023.
Article in English | MEDLINE | ID: mdl-38034068

ABSTRACT

Aging FMR1 premutation carriers are at risk of developing neurodegenerative disorders, including fragile X-associated tremor/ataxia syndrome (FXTAS), and there is a need to identify biomarkers that can aid in identification and treatment of these disorders. While FXTAS is more common in males than females, females can develop the disease, and some evidence suggests that patterns of impairment may differ across sexes. Few studies include females with symptoms of FXTAS, and as a result, little information is available on key phenotypes for tracking disease risk and progression in female premutation carriers. Our aim was to examine quantitative motor and cognitive traits in aging premutation carriers. We administered oculomotor tests of visually guided/reactive saccades (motor) and antisaccades (cognitive control) in 22 premutation carriers (73% female) and 32 age- and sex-matched healthy controls. Neither reactive saccade latency nor accuracy differed between groups. FMR1 premutation carriers showed increased antisaccade latencies relative to controls, both when considering males and females together and when analyzing females separately. Reduced saccade accuracy and increased antisaccade latency each were associated with more severe clinically rated neuromotor impairments. Findings indicate that together male and female premutation carriers show a reduced ability to rapidly exert volitional control over prepotent responses and that quantitative differences in oculomotor behavior, including control of visually guided and antisaccades, may track with FXTAS - related degeneration in male and female premutation carriers.

3.
J Neurodev Disord ; 15(1): 41, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37993779

ABSTRACT

Autism spectrum disorder (ASD) is associated with a diverse range of etiological processes, including both genetic and non-genetic causes. For a plurality of individuals with ASD, it is likely that the primary causes involve multiple common inherited variants that individually account for only small levels of variation in phenotypic outcomes. This genetic landscape creates a major challenge for detecting small but important pathogenic effects associated with ASD. To address similar challenges, separate fields of medicine have identified endophenotypes, or discrete, quantitative traits that reflect genetic likelihood for a particular clinical condition and leveraged the study of these traits to map polygenic mechanisms and advance more personalized therapeutic strategies for complex diseases. Endophenotypes represent a distinct class of biomarkers useful for understanding genetic contributions to psychiatric and developmental disorders because they are embedded within the causal chain between genotype and clinical phenotype, and they are more proximal to the action of the gene(s) than behavioral traits. Despite their demonstrated power for guiding new understanding of complex genetic structures of clinical conditions, few endophenotypes associated with ASD have been identified and integrated into family genetic studies. In this review, we argue that advancing knowledge of the complex pathogenic processes that contribute to ASD can be accelerated by refocusing attention toward identifying endophenotypic traits reflective of inherited mechanisms. This pivot requires renewed emphasis on study designs with measurement of familial co-variation including infant sibling studies, family trio and quad designs, and analysis of monozygotic and dizygotic twin concordance for select trait dimensions. We also emphasize that clarification of endophenotypic traits necessarily will involve integration of transdiagnostic approaches as candidate traits likely reflect liability for multiple clinical conditions and often are agnostic to diagnostic boundaries. Multiple candidate endophenotypes associated with ASD likelihood are described, and we propose a new focus on the analysis of "endophenotype trait domains" (ETDs), or traits measured across multiple levels (e.g., molecular, cellular, neural system, neuropsychological) along the causal pathway from genes to behavior. To inform our central argument for research efforts toward ETD discovery, we first provide a brief review of the concept of endophenotypes and their application to psychiatry. Next, we highlight key criteria for determining the value of candidate endophenotypes, including unique considerations for the study of ASD. Descriptions of different study designs for assessing endophenotypes in ASD research then are offered, including analysis of how select patterns of results may help prioritize candidate traits in future research. We also present multiple candidate ETDs that collectively cover a breadth of clinical phenomena associated with ASD, including social, language/communication, cognitive control, and sensorimotor processes. These ETDs are described because they represent promising targets for gene discovery related to clinical autistic traits, and they serve as models for analysis of separate candidate domains that may inform understanding of inherited etiological processes associated with ASD as well as overlapping neurodevelopmental disorders.


Subject(s)
Autism Spectrum Disorder , Neurodevelopmental Disorders , Infant , Humans , Autism Spectrum Disorder/genetics , Endophenotypes , Language , Genetic Association Studies
4.
Res Sq ; 2023 May 25.
Article in English | MEDLINE | ID: mdl-37293056

ABSTRACT

Background: Sensorimotor impairments are common in autism spectrum disorder (ASD) and evident in unaffected first-degree relatives, suggesting that they may serve as important endophenotypes associated with inherited risk. We tested the familiality of sensorimotor impairments in ASD across multiple motor behaviors and effector systems and in relation to parental broader autism phenotypic (BAP) characteristics. Methods: Fifty-eight autistic individuals (probands), 109 parents, and 89 control participants completed tests of manual motor and oculomotor control. Sensorimotor tests varied in their involvement of rapid, feedforward control and sustained, sensory feedback control processes. Subgroup analyses compared families with at least one parent showing BAP traits (BAP+) and those in which neither parent showed BAP traits (BAP-). Results: Probands with BAP- parents (BAP- probands) showed rapid manual motor and oculomotor deficits, while BAP+ probands showed sustained motor impairments compared to controls. BAP- parents showed impaired rapid oculomotor and sustained manual motor abilities relative to BAP+ parents and controls. Atypical rapid oculomotor impairments also were familial. Limitations: Larger samples of ASD families including greater samples of probands with BAP+ parents are needed. Genetic studies also are needed to link sensorimotor endophenotype findings directly to genes. Conclusions: Results indicate rapid sensorimotor behaviors are selectively impacted in BAP- probands and their parents and may reflect familial liabilities for ASD that are independent of familial autistic traits. Sustained sensorimotor behaviors were affected in BAP+ probands and BAP- parents re ecting familial traits that may only confer risk when combined with parental autistic trait liabilities. These findings provide new evidence that rapid and sustained sensorimotor alterations represent strong but separate familial pathways of ASD risk that demonstrate unique interactions with mechanisms related to parental autistic traits.

5.
Cereb Cortex ; 33(14): 8990-9002, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37246152

ABSTRACT

Sensorimotor issues are present in the majority of individuals with autism spectrum disorder (ASD) and are associated with core symptoms. The neural systems associated with these impairments remain unclear. Using a visually guided precision gripping task during functional magnetic resonance imaging, we characterized task-based connectivity and activation of cortical, subcortical, and cerebellar visuomotor networks. Participants with ASD (n = 19; ages 10-33) and age- and sex-matched neurotypical controls (n = 18) completed a visuomotor task at low and high force levels. Relative to controls, individuals with ASD showed reduced functional connectivity of right primary motor-anterior cingulate cortex and left anterior intraparietal lobule (aIPL)-right Crus I at high force only. At low force, increased caudate, and cerebellar activation each were associated with sensorimotor behavior in controls, but not in ASD. Reduced left aIPL-right Crus I connectivity was associated with more severe clinically rated ASD symptoms. These findings suggest that sensorimotor problems in ASD, particularly at high force levels, involve deficits in the integration of multimodal sensory feedback and reduced reliance on error-monitoring processes. Adding to literature positing that cerebellar dysfunction contributes to multiple developmental issues in ASD, our data implicate parietal-cerebellar connectivity as a key neural marker underlying both core and comorbid features of ASD.


Subject(s)
Autism Spectrum Disorder , Motor Cortex , Humans , Brain Mapping/methods , Cerebellum , Magnetic Resonance Imaging/methods , Neural Pathways
6.
Front Integr Neurosci ; 16: 1020980, 2022.
Article in English | MEDLINE | ID: mdl-36159091

ABSTRACT

[This corrects the article DOI: 10.3389/fnint.2022.821109.].

7.
Front Integr Neurosci ; 16: 821109, 2022.
Article in English | MEDLINE | ID: mdl-35592866

ABSTRACT

Background: Sensorimotor issues are common in autism spectrum disorder (ASD), though their neural bases are not well understood. The cerebellum is vital to sensorimotor control and reduced cerebellar volumes in ASD have been documented. Our study examined the extent to which cerebellar volumes are associated with multiple sensorimotor behaviors in ASD. Materials and Methods: Fifty-eight participants with ASD and 34 typically developing (TD) controls (8-30 years) completed a structural MRI scan and precision grip testing, oculomotor testing, or both. Force variability during precision gripping as well as absolute error and trial-to-trial error variability of visually guided saccades were examined. Volumes of cerebellar lobules, vermis, and white matter were quantified. The relationships between each cerebellar region of interest (ROI) and force variability, saccade error, and saccade error variability were examined. Results: Relative to TD controls, individuals with ASD showed increased force variability. Individuals with ASD showed a reduced volume of cerebellar vermis VI-VII relative to TD controls. Relative to TD females, females with ASD showed a reduced volume of bilateral cerebellar Crus II/lobule VIIB. Increased volume of Crus I was associated with increased force variability. Increased volume of vermal lobules VI-VII was associated with reduced saccade error for TD controls but not individuals with ASD. Increased right lobule VIII and cerebellar white matter volumes as well as reduced right lobule VI and right lobule X volumes were associated with greater ASD symptom severity. Reduced volumes of right Crus II/lobule VIIB were associated with greater ASD symptom severity in only males, while reduced volumes of right Crus I were associated with more severe restricted and repetitive behaviors only in females. Conclusion: Our finding that increased force variability in ASD is associated with greater cerebellar Crus I volumes indicates that disruption of sensory feedback processing supported by Crus I may contribute to skeletomotor differences in ASD. Results showing that volumes of vermal lobules VI-VII are associated with saccade precision in TD but not ASD implicates atypical organization of the brain systems supporting oculomotor control in ASD. Associations between volumes of cerebellar subregions and ASD symptom severity suggest cerebellar pathological processes may contribute to multiple developmental challenges in ASD.

8.
Mol Autism ; 12(1): 52, 2021 07 10.
Article in English | MEDLINE | ID: mdl-34246292

ABSTRACT

BACKGROUND: Sensorimotor issues are common in autism spectrum disorder (ASD), related to core symptoms, and predictive of worse functional outcomes. Deficits in rapid behaviors supported primarily by feedforward mechanisms, and continuous, feedback-guided motor behaviors each have been reported, but the degrees to which they are distinct or co-segregate within individuals and across development are not well understood. METHODS: We characterized behaviors that varied in their involvement of feedforward control relative to feedback control across skeletomotor (precision grip force) and oculomotor (saccades) control systems in 109 individuals with ASD and 101 age-matched typically developing controls (range: 5-29 years) including 58 individuals with ASD and 57 controls who completed both grip and saccade tests. Grip force was examined across multiple force (15, 45, and 85% MVC) and visual gain levels (low, medium, high). Maximum grip force also was examined. During grip force tests, reaction time, initial force output accuracy, variability, and entropy were examined. For the saccade test, latency, accuracy, and trial-wise variability of latency and accuracy were examined. RESULTS: Relative to controls, individuals with ASD showed similar accuracy of initial grip force but reduced accuracy of saccadic eye movements specific to older ages of our sample. Force variability was greater in ASD relative to controls, but saccade gain variability (across trials) was not different between groups. Force entropy was reduced in ASD, especially at older ages. We also find reduced grip strength in ASD that was more severe in dominant compared to non-dominant hands. LIMITATIONS: Our age-related findings rely on cross-sectional data. Longitudinal studies of sensorimotor behaviors and their associations with ASD symptoms are needed. CONCLUSIONS: We identify reduced accuracy of initial motor output in ASD that was specific to the oculomotor system implicating deficient feedforward control that may be mitigated during slower occurring behaviors executed in the periphery. Individuals with ASD showed increased continuous force variability but similar levels of trial-to-trial saccade accuracy variability suggesting that feedback-guided refinement of motor commands is deficient specifically when adjustments occur rapidly during continuous behavior. We also document reduced lateralization of grip strength in ASD implicating atypical hemispheric specialization.


Subject(s)
Autism Spectrum Disorder , Adolescent , Adult , Child , Child, Preschool , Cross-Sectional Studies , Feedback , Hand Strength , Humans , Saccades , Young Adult
9.
J Autism Dev Disord ; 50(7): 2336-2347, 2020 Jul.
Article in English | MEDLINE | ID: mdl-29882107

ABSTRACT

Individuals with ASD have increased rates of depression compared to the general population. Repetitive cognition is a core feature of ASD; in typically developing adults, repetitive cognition has been associated with attentional biases to negative emotional material and increased prospective depression risk. We compared adults with ASD to typically developing adults with depression and never-depressed controls, using a paired preference paradigm sensitive to affective biases in the context of repetitive cognition. Both clinical cohorts oriented faster to negative social-emotional material and spent less time overall on positive material, compared to healthy controls. Exploratory analyses within ASD revealed specific influences of repetitive behavior on patterns of affective bias. Findings help pinpoint susceptibilities in ASD that may confer increased risk for depression.


Subject(s)
Attentional Bias , Autistic Disorder/psychology , Depression/psychology , Social Behavior , Adult , Cognition , Emotions , Female , Humans , Male , Stereotyped Behavior
10.
J Neurophysiol ; 122(4): 1330-1341, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31314644

ABSTRACT

In addition to core deficits in social-communication abilities and repetitive behaviors and interests, many patients with autism spectrum disorder (ASD) experience developmental comorbidities, including sensorimotor issues. Sensorimotor issues are common in ASD and associated with more severe clinical symptoms. Importantly, sensorimotor behaviors are precisely quantifiable and highly translational, offering promising targets for neurophysiological studies of ASD. We used functional MRI to identify brain regions associated with sensorimotor behavior using a visually guided precision gripping task in individuals with ASD (n = 20) and age-, IQ-, and handedness-matched controls (n = 18). During visuomotor behavior, individuals with ASD showed greater force variability than controls. The blood oxygen level-dependent signal for multiple cortical and subcortical regions was associated with force variability, including motor and premotor cortex, posterior parietal cortex, extrastriate cortex, putamen, and cerebellum. Activation in the right premotor cortex scaled with sensorimotor variability in controls but not in ASD. Individuals with ASD showed greater activation than controls in left putamen and left cerebellar lobule VIIb, and activation in these regions was associated with more severe clinically rated symptoms of ASD. Together, these results suggest that greater sensorimotor variability in ASD is associated with altered cortical-striatal processes supporting action selection and cortical-cerebellar circuits involved in feedback-guided reactive adjustments of motor output. Our findings also indicate that atypical organization of visuomotor cortical circuits may result in heightened reliance on subcortical circuits typically dedicated to motor skill acquisition. Overall, these results provide new evidence that sensorimotor alterations in ASD involve aberrant cortical and subcortical organization that may contribute to key clinical issues in patients.NEW & NOTEWORTHY This is the first known study to examine functional brain activation during precision visuomotor behavior in autism spectrum disorder (ASD). We replicate previous findings of elevated force variability in ASD and find these deficits are associated with atypical function of ventral premotor cortex, putamen, and posterolateral cerebellum, indicating cortical-striatal processes supporting action selection and cortical-cerebellar circuits involved in feedback-guided reactive adjustments of motor output may be key targets for understanding the neurobiology of ASD.


Subject(s)
Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/psychology , Brain/physiopathology , Psychomotor Performance/physiology , Adolescent , Adult , Brain Mapping , Cerebellum/physiopathology , Female , Hand Strength , Humans , Magnetic Resonance Imaging , Male , Motor Cortex/physiopathology , Putamen/physiopathology , Young Adult
11.
J Autism Dev Disord ; 48(6): 1908-1919, 2018 06.
Article in English | MEDLINE | ID: mdl-29307039

ABSTRACT

Existing models of autism spectrum disorder (ASD) disagree as to whether the core features should be conceptualized as convergent (related) or divergent (unrelated), and the few previous studies addressing this question have found conflicting results. We examined standardized parent ratings of symptoms from three domains (social, communication, repetitive behaviors) in large samples of typically developing children, children with ASD, and ASD subgroups. Our results suggest that the most evidence for divergence lies in typically developing children and lower severity ASD cases, while more evidence for convergence is found in a subset of cases with more severe impairment on any core feature. These results highlight the importance of subgrouping ASD given the degree of phenotypic heterogeneity present across the autism spectrum.


Subject(s)
Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/psychology , Intelligence Tests , Parents/psychology , Severity of Illness Index , Adolescent , Child , Child, Preschool , Female , Humans , Male
12.
Front Neurosci ; 10: 586, 2016.
Article in English | MEDLINE | ID: mdl-28066169

ABSTRACT

Background: Our experiences with the world play a critical role in neural and behavioral development. Children with autism spectrum disorder (ASD) spend a disproportionate amount of time seeking out, attending to, and engaging with aspects of their environment that are largely nonsocial in nature. In this study we adapted an established method for eliciting and quantifying aspects of visual choice behavior related to preference to test the hypothesis that preference for nonsocial sources of stimulation diminishes orientation and attention to social sources of stimulation in children with ASD. Method: Preferential viewing tasks can serve as objective measures of preference, with a greater proportion of viewing time to one item indicative of increased preference. The current task used gaze-tracking technology to examine patterns of visual orientation and attention to stimulus pairs that varied in social (faces) and nonsocial content (high autism interest or low autism interest). Participants included both adolescents diagnosed with ASD and typically developing; groups were matched on IQ and gender. Results: Repeated measures ANOVA revealed that individuals with ASD had a significantly greater latency to first fixate on social images when this image was paired with a high autism interest image, compared to a low autism interest image pairing. Participants with ASD showed greater total look time to objects, while typically developing participants preferred to look at faces. Groups also differed in number and average duration of fixations to social and object images. In the ASD group only, a measure of nonsocial interest was associated with reduced preference for social images when paired with high autism interest images. Conclusions: In ASD, the presence of nonsocial sources of stimulation can significantly increase the latency of look time to social sources of information. These results suggest that atypicalities in social motivation in ASD may be context-dependent, with a greater degree of plasticity than is assumed by existing social motivation accounts of ASD.

13.
Dev Psychobiol ; 55(5): 465-82, 2013 Jul.
Article in English | MEDLINE | ID: mdl-22644965

ABSTRACT

Dysregulated tonic pupil size has been reported in autism spectrum disorder (ASD). Among the possible sources of this dysregulation are disruptions in the feedback loop between norepinephrine (NE) and hypothalamic systems. In the current study, we examined afternoon levels of salivary alpha-amylase (sAA, a putative correlate of NE) and cortisol (used to assess stress-based responses) in two independent samples of children with ASD. We found a larger pupil size and lower sAA levels in ASD, compared to typical and clinical age-matched controls. This was substantiated at the individual level, as sAA levels were strongly correlated with tonic pupil size. Relatively little diurnal variation in sAA taken in the home environment in the ASD group was also observed, while typical controls showed a significant linear increase throughout the day. Results are discussed in terms of potential early biomarkers and the elucidation of underlying neural dysfunction in ASD.


Subject(s)
Autonomic Nervous System/physiopathology , Child Development Disorders, Pervasive/physiopathology , Hydrocortisone/analysis , Pupil/physiology , Salivary alpha-Amylases/analysis , Child , Child, Preschool , Circadian Rhythm/physiology , Female , Humans , Infant , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...