Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters










Publication year range
2.
Hepatol Commun ; 3(7): 908-924, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31304450

ABSTRACT

Hepatocyte estrogen receptor α (ERα) was recently recognized as a relevant molecular target for nonalcoholic fatty liver disease (NAFLD) prevention. The present study defined to what extent hepatocyte ERα could be involved in preserving metabolic homeostasis in response to a full (17ß-estradiol [E2]) or selective (selective estrogen receptor modulator [SERM]) activation. Ovariectomized mice harboring a hepatocyte-specific ERα deletion (LERKO mice) and their wild-type (WT) littermates were fed a high-fat diet (HFD) and concomitantly treated with E2, tamoxifen (TAM; the most used SERM), or vehicle. As expected, both E2 and TAM prevented all HFD-induced metabolic disorders in WT mice, and their protective effects against steatosis were abolished in LERKO mice. However, while E2 still prevented obesity and glucose intolerance in LERKO mice, hepatocyte ERα deletion also abrogated TAM-mediated control of food intake as well as its beneficial actions on adiposity, insulin sensitivity, and glucose homeostasis, suggesting a whole-body protective role for liver-derived circulating factors. Moreover, unlike E2, TAM induced a rise in plasma concentration of the anorectic hepatokine growth differentiation factor 15 (Gdf15) through a transcriptional mechanism dependent on hepatocyte ERα activation. Accordingly, ERα was associated with specific binding sites in the Gdf15 regulatory region in hepatocytes from TAM-treated mice but not under E2 treatment due to specific epigenetic modifications. Finally, all the protective effects of TAM were abolished in HFD-fed GDF15-knockout mice. Conclusion: We identified the selective modulation of hepatocyte ERα as a pharmacologic strategy to induce sufficient anorectic hepatokine Gdf15 to prevent experimental obesity, type 2 diabetes, and NAFLD.

4.
Cell Tissue Res ; 365(2): 209-23, 2016 08.
Article in English | MEDLINE | ID: mdl-27115420

ABSTRACT

Growth/differentiation factor-15 (Gdf-15) is a member of the transforming growth factor-ß (Tgf-ß) superfamily and has been shown to be a potent neurotrophic factor for midbrain dopaminergic (DAergic) neurons both in vitro and in vivo. Gdf-15 has also been shown to be involved in inflammatory processes. The aim of this study was to identify the role of endogenous Gdf-15 in the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of Parkinson's disease (PD) by comparing Gdf-15 (+/+) and Gdf-15 (-/-) mice. At 4 days and 14 days post-MPTP administration, both Gdf-15 (+/+) and Gdf-15 (-/-) mice showed a similar decline in DAergic neuron numbers and in striatal dopamine (DA) levels. This was followed by a comparable restorative phase at 90 days and 120 days, indicating that the absence of Gdf-15 does not affect the susceptibility or the recovery capacity of the nigrostriatal system after MPTP administration. The MPTP-induced microglial and astrocytic response was not significantly altered between the two genotypes. However, pro-inflammatory and anti-inflammatory cytokine profiling revealed the differential expression of markers in Gdf-15 (+/+) and Gdf-15 (-/-) mice after MPTP administration. Thus, the MPTP mouse model fails to uncover a major role of endogenous Gdf-15 in the protection of MPTP-lesioned nigrostriatal DAergic neurons, in contrast to its capacity to protect the 6-hydroxydopamine-intoxicated nigrostriatal system.


Subject(s)
Dopaminergic Neurons/metabolism , Growth Differentiation Factor 15/deficiency , Neostriatum/metabolism , Neostriatum/pathology , Substantia Nigra/metabolism , Substantia Nigra/pathology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/administration & dosage , Animals , Biomarkers/metabolism , Cell Proliferation , Cytokines/metabolism , Growth Differentiation Factor 15/metabolism , Inflammation Mediators/metabolism , Mice , Neuroglia/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
Cell Tissue Res ; 365(2): 225-32, 2016 08.
Article in English | MEDLINE | ID: mdl-27094431

ABSTRACT

The neural-crest-derived sympathoadrenal cell lineage gives rise to sympathetic neurons and to endocrine chromaffin cells of the adrenal medulla. Both cell types express a largely overlapping set of genes, including those coding for the molecular machinery related to the synthesis and exocytotic release of catecholamines. During their early development, sympathetic neurons and chromaffin cells rely on a shared transcription factor network that controls the establishment of these common features. Despite many similarities, mature sympathetic neurons and chromaffin cells significantly differ regarding their morphology and function. Most prominently, sympathetic neurons possess axons that are absent in mammalian adrenal chromaffin cells. The molecular mechanism underlying the divergent development of sympathoadrenal cells into neuronal and endocrine cells remains elusive. Mutational inactivation of the ribonuclease dicer hints at the importance of microRNAs in this diversification. We show here that miR-124 is detectable in developing sympathetic neurons but absent in chromaffin cell precursors. We further demonstrate that miR-124 promotes neurite elongation when transfected into cultured chromaffin cells indicating its capability to support the establishment of a neuronal morphology in non-neuronal sympathoadrenal cells. Our results also show that treatment of PC12 cells with the neurotrophin nerve growth factor leads to an upregulation of miR-124 expression and that inhibition of miR-124 reduces nerve-growth-factor-induced neurite outgrowth in PC12 cells. Thus, our data indicate that miR-124 contributes to the establishment of specific neuronal features in developing sympathoadrenal cells.


Subject(s)
Adrenal Medulla/cytology , Cell Lineage/genetics , Chromaffin Cells/metabolism , Gene Expression Profiling , MicroRNAs/metabolism , Neurites/metabolism , Sympathetic Nervous System/cytology , Amides/pharmacology , Animals , Cell Lineage/drug effects , Chromaffin Cells/drug effects , In Situ Hybridization , Mice , MicroRNAs/genetics , Nerve Growth Factors/pharmacology , Neurites/drug effects , PC12 Cells , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Rats , Up-Regulation/drug effects , Up-Regulation/genetics
6.
Int J Dev Neurosci ; 50: 55-64, 2016 May.
Article in English | MEDLINE | ID: mdl-26970009

ABSTRACT

Fibroblast growth factor 2 (FGF-2) is an abundant growth factor in the brain and exerts multiple functions on neural cells ranging from cell division, cell fate determination to differentiation. However, many details of the molecular mechanisms underlying the diverse functions of FGF-2 are poorly understood. In a comparative microarray analysis of motor sensory cortex (MSC) tissue of adult knockout (FGF-2(-/-)) and control (FGF-2(+/+)) mice, we found a substantial number of regulated genes, which are implicated in cytoskeletal machinery dynamics. Specifically, we found a prominent downregulation of Arhgef6. Arhgef6 mRNA was significantly reduced in the FGF-2(-/-) cortex, and Arhgef6 protein virtually absent, while RhoA protein levels were massively increased and Cdc42 protein levels were reduced. Since Arhgef6 is localized to dendritic spines, we next analyzed dendritic spines of adult FGF2(-/-) and control mouse cortices. Spine densities were significantly increased, whereas mean length of spines on dendrites of layer V of MSC neurons in adult FGF-2(-/-) mice was significantly decreased as compared to respective controls. Furthermore, neurite length in dissociated cortical cultures from E18 FGF-2(-/-) mice was significantly reduced at DIV7 as compared to wildtype neurons. Despite the fact that altered neuronal morphology and alterations in dendritic spines were observed, FGF-2(-/-) mice behave relatively unsuspicious in several behavioral tasks. However, FGF-2(-/-) mice exhibited decreased thermal pain sensitivity in the hotplate-test.


Subject(s)
Dendritic Spines/genetics , Down-Regulation/genetics , Fibroblast Growth Factor 2/deficiency , Neuronal Outgrowth/genetics , Neurons/cytology , Rho Guanine Nucleotide Exchange Factors/metabolism , Adaptation, Ocular/genetics , Animals , Cells, Cultured , Cerebral Cortex/cytology , Embryo, Mammalian , Fibroblast Growth Factor 2/genetics , Male , Mice , Mice, Transgenic , Microtubule-Associated Proteins/metabolism , Neurites/physiology , Phosphopyruvate Hydratase/metabolism , Reaction Time/genetics , Rho Guanine Nucleotide Exchange Factors/genetics , Swimming/psychology , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism
7.
Dev Neurobiol ; 76(11): 1201-1212, 2016 11.
Article in English | MEDLINE | ID: mdl-26850754

ABSTRACT

The brain functions within a specialized environment tightly controlled by brain barrier mechanisms. Understanding the regulation of barrier formation is important for understanding brain development and may also lead to finding new ways to deliver pharmacotherapies to the brain; access of many potentially promising drugs is severely hindered by these barrier mechanisms. The cellular composition of the neurovascular unit of the blood-brain barrier proper and their effects on regulation of its function are beginning to be understood. One hallmark of the neurovascular unit in the adult is the astroglial foot processes that tightly surround cerebral blood vessels. However their role in barrier formation is still unclear. In this study we examined barrier function in newborn, juvenile and adult mice lacking fibroblast growth factor-2 (FGF-2), which has been shown to result in altered astroglial differentiation during development. We show that during development of FGF-2 deficient mice the astroglial contacts with cerebral blood vessels are delayed compared with wild-type animals. However, this delay did not result in changes to the permeability properties of the blood brain barrier as assessed by exclusion of either small or larger sized molecules at this interface. In addition cerebral vessels were positive for tight-junction proteins and we observed no difference in the ultrastructure of the tight-junctions. The results indicate that the direct contact of astroglia processes to cerebral blood vessels is not necessary for either the formation of the tight-junctions or for basic permeability properties and function of the blood-brain barrier. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1201-1212, 2016.


Subject(s)
Astrocytes/metabolism , Blood-Brain Barrier/physiology , Brain , Fibroblast Growth Factor 2/metabolism , Animals , Brain/blood supply , Brain/growth & development , Brain/metabolism , Fibroblast Growth Factor 2/deficiency , Mice , Mice, Knockout , Permeability
8.
Neurobiol Dis ; 88: 1-15, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26733415

ABSTRACT

Growth/differentiation factor-15 (Gdf-15) is a member of the TGF-ß superfamily and a pleiotropic, widely distributed cytokine, which has been shown to play roles in various pathologies, including inflammation. Analysis of Gdf-15(-/-) mice has revealed that it serves the postnatal maintenance of spinal cord motor neurons and sensory neurons. In a previous study, exogenous Gdf-15 rescued 6-hydroxydopamine (6-OHDA) lesioned Gdf-15(+/+) nigrostriatal dopaminergic (DAergic) neurons in vitro and in vivo. Whether endogenous Gdf-15 serves the physiological maintenance of nigrostriatal DAergic neurons in health and disease is not known and was addressed in the present study. Stereotactic injection of 6-OHDA into the medial forebrain bundle (MFB) led to a significant decline in the numbers of DAergic neurons in both Gdf-15(+/+) and Gdf-15(-/-) mice over a time-period of 14days. However, this decrease was exacerbated in the Gdf-15(-/-) mice, with only 5.5% surviving neurons as compared to 24% in the Gdf-15(+/+) mice. Furthermore, the microglial response to the 6-OHDA lesion was reduced in Gdf-15(-/-) mice, with significantly lower numbers of total and activated microglia and a differential cytokine expression as compared to the Gdf-15(+/+) mice. Using in vitro models, we could demonstrate the importance of endogenous Gdf-15 in promoting DAergic neuron survival thus highlighting its relevance in a direct neurotrophic supportive role. Taken together, these results indicate the importance of Gdf-15 in promoting survival of DAergic neurons and regulating the inflammatory response post 6-OHDA lesion.


Subject(s)
Cytokines/metabolism , Dopaminergic Neurons/pathology , Growth Differentiation Factor 15/deficiency , Microglia/pathology , Parkinson Disease/pathology , Animals , Animals, Newborn , Cell Count , Cell Survival , Cells, Cultured , Cytokines/genetics , Disease Models, Animal , Growth Differentiation Factor 15/genetics , In Vitro Techniques , Mesencephalon/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurites/pathology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Oxidopamine/toxicity , Parkinson Disease/etiology , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
10.
Front Neuroanat ; 9: 63, 2015.
Article in English | MEDLINE | ID: mdl-26074780

ABSTRACT

Analyses of mice carrying a deletion of the pan-neurotrophin receptor p75NTR have allowed identifying p75NTR as an important structural regulator of the hippocampus. Most of the previous analyses were done using p75NTR (ExIII) knockout mice which still express the short isoform of p75NTR. To scrutinize the role of p75NTR in the hippocampus, we analyzed adult and aged p75NTR (ExIV) knockout mice, in which both, the short and the full-length isoform are deleted. Deletion of these isoforms induced morphological alterations in the adult dentate gyrus (DG), leading to an increase in the thickness of the molecular and granular layer. Based on these observations, we next determined the morphological substrates that might contribute to this phenotype. The cholinergic innervation of the molecular and granular layer of the DG was found to be significantly increased in the knockout mice. Furthermore, adult neurogenesis in the DG was found to be significantly altered with increased numbers of doublecortin (DCX) positive cells and reduced numbers of apoptotic cells in p75NTR (ExIV) knockout mice. However, cell proliferation as measured by phosphohiston H3 (PH3) positive cell numbers was not affected. These morphological alterations (number of DCX-positive cells and increased cholinergic fiber densities) as well as reduced cell death in the DG are likely to contribute to the observed thickening of the granular layer in p75NTR (ExIV) knockout mice. In addition, Sholl-analysis of DCX-positive neurons revealed a higher dendritic complexity and could thus be a possible morphological correlate for the increased thickness of the molecular layer in p75NTR deficient animals. Our data clearly demonstrate that deletion of both, the short and the full-length isoform of p75NTR affects DG morphology, due to alterations of the cholinergic system and an imbalance between neurogenesis and programmed cell death within the subgranular zone.

11.
Cell Tissue Res ; 362(2): 317-30, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26077927

ABSTRACT

Growth/differentiation factor-15 (GDF-15) is a distant member of the transforming growth factor beta (TGF-ß) superfamily. It is widely distributed in the nervous system, where it has been shown to play an important role in neuronal maintenance. The present study investigates the role of endogenous GDF-15 in sciatic nerve (SN) lesions using wild-type (WT) and GDF-15 knock-out (KO) mice. SN of 5-6-month-old mice were crushed or transected. Dorsal root ganglia (DRG) and nerve tissue were analyzed at different time points from 6 h to 9 weeks post-lesion. Both crush and transection induced GDF-15 mRNA and protein in the distal portion of the nerve, with a peak at day 7. DRG neuron death did not significantly differ between the genotypes; similarly, remyelination of regenerating axons was not affected by the genotype. Alternative macrophage activation and macrophage recruitment were more pronounced in the KO nerve. Protrusion speed of axons was similar in the two genotypes but WT axons showed better maturation, as indicated by larger caliber at 9 weeks. Furthermore, the regenerated WT nerve showed better performance in the electromyography test, indicating better functional recovery. We conclude that endogenous GDF-15 is beneficial for axon regeneration following SN crush.


Subject(s)
Axons/metabolism , Ganglia, Spinal/metabolism , Growth Differentiation Factor 15/metabolism , Nerve Regeneration/physiology , Sciatic Nerve/metabolism , Animals , Mice, Inbred C57BL , Mice, Transgenic , Nerve Crush/methods , Nerve Regeneration/genetics , Transforming Growth Factor beta/metabolism
12.
Dev Biol ; 400(2): 210-23, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25661788

ABSTRACT

The development of sympathetic neurons and chromaffin cells is differentially controlled at distinct stages by various extrinsic and intrinsic signals. Here we use conditional deletion of Dicer1 in neural crest cells and noradrenergic neuroblasts to identify stage specific functions in sympathoadrenal lineages. Conditional Dicer1 knockout in neural crest cells of Dicer1(Wnt1Cre) mice results in a rapid reduction in the size of developing sympathetic ganglia and adrenal medulla. In contrast, Dicer1 elimination in noradrenergic neuroblasts of Dicer1(DbhiCre) animals affects sympathetic neuron survival starting at late embryonic stages and chromaffin cells persist at least until postnatal week 1. A differential function of Dicer1 signaling for the development of embryonic noradrenergic and cholinergic sympathetic neurons is demonstrated by the selective increase in the expression of Tlx3 and the cholinergic marker genes VAChT and ChAT at E16.5. The number of Dbh, Th and TrkA expressing noradrenergic neurons is strongly decreased in Dicer1-deficient sympathetic ganglia at birth, whereas Tlx3(+)/ Ret(+) cholinergic neurons cells are spared from cell death. The postnatal death of chromaffin cells is preceded by the loss of Ascl1, mir-375 and Pnmt and an increase in the markers Ret and NF-M, which suggests that Dicer1 is required for the maintenance of chromaffin cell differentiation and survival. Taken together, these findings demonstrate distinct stage and lineage specific functions of Dicer1 signaling in differentiation and survival of sympathetic neurons and adrenal chromaffin cells.


Subject(s)
Adrenal Medulla/cytology , Chromaffin Cells/cytology , DEAD-box RNA Helicases/metabolism , Ganglia, Sympathetic/cytology , Ribonuclease III/metabolism , Adrenal Medulla/embryology , Adrenal Medulla/innervation , Adrenal Medulla/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Survival , Chromaffin Cells/metabolism , Ganglia, Sympathetic/embryology , Ganglia, Sympathetic/metabolism , Mice , Neural Crest/metabolism , Stem Cells/metabolism
14.
J Neurosci ; 34(9): 3419-28, 2014 Feb 26.
Article in English | MEDLINE | ID: mdl-24573298

ABSTRACT

The neurotrophin receptor p75(NTR) has been implicated in mediating neuronal apoptosis after injury to the CNS. Despite its frequent induction in pathologic states, there is limited understanding of the mechanisms that regulate p75(NTR) expression after injury. Here, we show that after focal cerebral ischemia in vivo or oxygen-glucose deprivation in organotypic hippocampal slices or neurons, p75(NTR) is rapidly induced. A concomitant induction of proNGF, a ligand for p75(NTR), is also observed. Induction of this ligand/receptor system is pathologically relevant, as a decrease in apoptosis, after oxygen-glucose deprivation, is observed in hippocampal neurons or slices after delivery of function-blocking antibodies to p75(NTR) or proNGF and in p75(NTR) and ngf haploinsufficient slices. Furthermore, a significant decrease in infarct volume was noted in p75(NTR)-/- mice compared with the wild type. We also investigated the regulatory mechanisms that lead to post-ischemic induction of p75(NTR). We demonstrate that induction of p75(NTR) after ischemic injury is independent of transcription but requires active translation. Basal levels of p75(NTR) in neurons are maintained in part by the expression of microRNA miR-592, and an inverse correlation is seen between miR-592 and p75(NTR) levels in the adult brain. After cerebral ischemia, miR-592 levels fall, with a corresponding increase in p75(NTR) levels. Importantly, overexpression of miR-592 in neurons decreases the level of ischemic injury-induced p75(NTR) and attenuates activation of pro-apoptotic signaling and cell death. These results identify miR-592 as a key regulator of p75(NTR) expression and point to a potential therapeutic candidate to limit neuronal apoptosis after ischemic injury.


Subject(s)
Apoptosis/physiology , Gene Expression Regulation/physiology , Infarction, Middle Cerebral Artery/pathology , MicroRNAs/metabolism , Neurons/physiology , Receptors, Nerve Growth Factor/metabolism , Age Factors , Animals , Apoptosis/drug effects , Apoptosis/genetics , Disease Models, Animal , Gene Expression Regulation/genetics , Glucose/deficiency , Hippocampus/pathology , Humans , Hypoxia , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/genetics , Nerve Growth Factor/metabolism , Protein Precursors/metabolism , RNA, Small Interfering/metabolism , Receptors, Nerve Growth Factor/genetics
15.
Development ; 141(4): 773-83, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24496615

ABSTRACT

The activation of epidermal growth factor receptor (EGFR) affects multiple aspects of neural precursor behaviour, including proliferation and migration. Telencephalic precursors acquire EGF responsiveness and upregulate EGFR expression at late stages of development. The events regulating this process and its significance are still unclear. We here show that in the developing and postnatal hippocampus (HP), growth/differentiation factor (GDF) 15 and EGFR are co-expressed in primitive precursors as well as in more differentiated cells. We also provide evidence that GDF15 promotes responsiveness to EGF and EGFR expression in hippocampal precursors through a mechanism that requires active CXC chemokine receptor (CXCR) 4. Besides EGFR expression, GDF15 ablation also leads to decreased proliferation and migration. In particular, lack of GDF15 impairs both processes in the cornu ammonis (CA) 1 and only proliferation in the dentate gyrus (DG). Importantly, migration and proliferation in the mutant HP were altered only perinatally, when EGFR expression was also affected. These data suggest that GDF15 regulates migration and proliferation by promoting EGFR signalling in the perinatal HP and represent a first description of a functional role for GDF15 in the developing telencephalon.


Subject(s)
Animals, Newborn , Cell Movement/physiology , ErbB Receptors/metabolism , Gene Expression Regulation, Developmental/physiology , Growth Differentiation Factor 15/metabolism , Hippocampus/growth & development , Signal Transduction/physiology , Analysis of Variance , Animals , Bromodeoxyuridine , Carbocyanines , Cell Proliferation , Flow Cytometry , Fluorescence , Gene Expression Regulation, Developmental/genetics , Hippocampus/metabolism , Immunohistochemistry , Mice , Real-Time Polymerase Chain Reaction , Receptors, CXCR4/metabolism , beta-Galactosidase/metabolism
16.
J Mol Neurosci ; 52(3): 425-33, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24242951

ABSTRACT

Transient receptor potential channel 1 (TRPC1; a cation channel activated by store depletion and/or through an intracellular messenger) is expressed in a variety of tissues, including the brain. To study the physiological function of TRPC1, we investigated the role of endogenously expressed TRPC1 in glutamate-induced cell death, using the murine hippocampal cell line HT22. Knocking down TRPC1 mRNA using TRPC1-shRNA or blocking of TRPC channels using 2-APB (≥200 µM) robustly attenuated glutamate-induced cell death after 24 h of incubation with 5 mM glutamate. Glutamate toxicity in HT22 cells seems to involve metabotropic glutamate receptor mGluR5 since MPEP (2-methyl-6-(phenylethynyl)-pyridine), an mGluR5 antagonist (≥100 µM), abrogated glutamate toxicity. Furthermore, a direct activation of mGluR5 by CHPG [(RS)-chloro-5-hydroxyphenylglycine; 100 µM or 300 µM] promoted HT22 cell death. TRPC1 knock-down markedly reduced CHPG-induced cell death. These observations suggest that glutamate-induced cell death in HT22 cells activates mGluR5 receptors, which significantly increases Ca(2+) influx through TRPC1 channels. TRPC1 knock-down prevented glutamate- and CHPG-induced cell death, suggesting that glutamate-induced toxicity in HT22 cells is mediated through TRPC1 channels and an mGluR5-dependent pathway. Together, this work provides evidence for a novel receptor activation pathway of TRPC1 in glutamate-induced toxicity.


Subject(s)
Glutamic Acid/toxicity , Neurons/metabolism , TRPC Cation Channels/metabolism , Animals , Cell Death , Cell Line , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Glycine/analogs & derivatives , Glycine/pharmacology , Hippocampus/cytology , Mice , Neurons/drug effects , Neurons/physiology , Phenylacetates/pharmacology , Pyridines/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, Metabotropic Glutamate 5/agonists , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors , TRPC Cation Channels/genetics
17.
Neural Dev ; 8: 16, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23961995

ABSTRACT

BACKGROUND: Neurons in sympathetic ganglia and neuroendocrine cells in the adrenal medulla share not only their embryonic origin from sympathoadrenal precursors in the neural crest but also a range of functional features. These include the capacity for noradrenaline biosynthesis, vesicular storage and regulated release. Yet the regulation of neuronal properties in early neuroendocrine differentiation is a matter of debate and the developmental expression of the vesicle fusion machinery, which includes components found in both neurons and neuroendocrine cells, is not resolved. RESULTS: Analysis of synaptic protein and pan-neuronal marker mRNA expression during mouse development uncovers profound differences between sympathetic neurons and adrenal chromaffin cells, which result in qualitatively similar but quantitatively divergent transcript profiles. In sympathetic neurons embryonic upregulation of synaptic protein mRNA follows early and persistent induction of pan-neuronal marker transcripts. In adrenal chromaffin cells pan-neuronal marker expression occurs only transiently and synaptic protein messages remain at distinctly low levels throughout embryogenesis. Embryonic induction of synaptotagmin I (Syt1) in sympathetic ganglia and postnatal upregulation of synaptotagmin VII (Syt7) in adrenal medulla results in a cell type-specific difference in isoform prevalence. Dicer 1 inactivation in catecholaminergic cells reduces high neuronal synaptic protein mRNA levels but not their neuroendocrine low level expression. Pan-neuronal marker mRNAs are induced in chromaffin cells to yield a more neuron-like transcript pattern, while ultrastructure is not altered. CONCLUSIONS: Our study demonstrates that remarkably different gene regulatory programs govern the expression of synaptic proteins in the neuronal and neuroendocrine branch of the sympathoadrenal system. They result in overlapping but quantitatively divergent transcript profiles. Dicer 1-dependent regulation is required to establish high neuronal mRNA levels for synaptic proteins and to maintain repression of neurofilament messages in neuroendocrine cells.


Subject(s)
Chromaffin System/embryology , DEAD-box RNA Helicases/metabolism , Ganglia, Sympathetic/embryology , Gene Expression Regulation, Developmental , Neurons/metabolism , Ribonuclease III/metabolism , Vesicular Transport Proteins/metabolism , Animals , Chromaffin Cells/metabolism , Chromaffin Cells/ultrastructure , Chromaffin System/growth & development , Chromaffin System/metabolism , Ganglia, Sympathetic/growth & development , Ganglia, Sympathetic/metabolism , Mice , Mice, Mutant Strains , Neurofilament Proteins/metabolism , RNA, Messenger/metabolism , Synaptosomal-Associated Protein 25/metabolism , Synaptotagmins/metabolism , rab3A GTP-Binding Protein/metabolism
18.
Neural Dev ; 8: 12, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23777568

ABSTRACT

BACKGROUND: The neural crest (NC) is a transient embryonic structure unique to vertebrates, which generates peripheral sensory and autonomic neurons, glia, neuroendocrine chromaffin and thyroid C-cells, melanocytes, and mesenchymal derivatives such as parts of the skull, heart, and meninges. The sympathoadrenal (SA) cell lineage is one major sub-lineage of the NC that gives rise to sympathetic neurons, chromaffin cells, and the intermediate small intensely fluorescent (SIF) cells. A key question is when during NC ontogeny do multipotent progenitors segregate into the different NC-derived lineages. Recent evidence suggested that sympathetic, sensory, and melanocyte progenitors delaminate from the thoracic neural tube (NT) in successive, largely non-overlapping waves and that at least certain NC progenitors are already fate-restricted within the NT. Whether sympathetic neurons and chromaffin cells, suggested by cell culture studies to share a common progenitor, are also fate segregated in ovo prior to emigration, is not known. RESULTS: We have conducted single cell electroporations of a GFP-encoding plasmid into the dorsal midline of E2 chick NTs at the adrenomedullary level of the NC. Analysis of their derivatives, performed at E6, revealed that in most cases, labelled progeny was detected in both sympathetic ganglia and adrenal glands, where cells co-expressed characteristic marker combinations. CONCLUSIONS: Our results show that sympathetic neurons and adrenal chromaffin cells share a common progenitor in the NT. Together with previous findings we suggest that phenotypic diversification of these sublineages is likely to occur after delamination from the NT and prior to target encounter.


Subject(s)
Chromaffin Cells/cytology , Ganglia, Sympathetic/cytology , Neural Crest/cytology , Stem Cells/cytology , Sympathetic Nervous System/embryology , Animals , Cell Differentiation/physiology , Cell Lineage/physiology , Chick Embryo , Chickens , Neural Crest/embryology
19.
Cytokine Growth Factor Rev ; 24(4): 373-84, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23787157

ABSTRACT

GDF-15 (also MIC-1, NAG-1, PLAB, PTGFB) is a member of the TGF-ß superfamily, which is widely distributed in mammalian tissues and has been shown to play multiple roles in various pathologies, including inflammation, cancer, cardiovascular diseases, and obesity. GDF-15 serum levels are a highly reliable predictor of disease progression. Both the anti-tumorigenic potential of GDF-15 and its capacity to promote metastasis have been documented for a large variety of cancers, yet its opposing functions, which are typical for members of the TGF-ß superfamily, have only partly been resolved on the molecular level. Knowledge on physiological functions in the non-diseased organism is scarce. In the nervous system GDF-15 knockout analyses have revealed that GDF-15 is essential for the postnatal maintenance of various neuron populations. When applied exogenously GDF-15 is a powerful factor for promoting survival of developing and lesioned neurons in vitro and in vivo. Receptor activation by GDF-15 has only been partially resolved.


Subject(s)
Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Animals , Cardiovascular Diseases/metabolism , Gene Expression Regulation , Humans , Inflammation , Mice , Neoplasms/metabolism , Obesity/metabolism , Signal Transduction , Tissue Distribution , Transforming Growth Factor beta
20.
Cell Tissue Res ; 353(1): 1-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23640134

ABSTRACT

Growth/differentiation factor-15 (GDF-15) is a distant member of the transforming growth factor-ß superfamily and is ubiquitously expressed in the central nervous system. It is prominently upregulated in cerebral cortical and ischemic lesion paradigms. GDF-15 robustly promotes the survival of lesioned nigrostriatal dopaminergic neurons in vivo; GDF-15-deficient mice exhibit progressive postnatal motor and sensory neuron losses implying essential functions of GDF-15 in neuronal survival. We show that GDF-15 mRNA and protein are, respectively, six-fold and three-fold upregulated in the murine retina at 1 day after optic nerve crush, slightly elevated mRNA levels being maintained until day 28. However, the magnitude and time course of retinal ganglion cell (RGC) death are indistinguishable in knockout and control mice. Selected mRNAs implicated in the regulation of the death vs. survival of RGCs, including ATF3, Bad, Bcl-2 and caspase-8, were similarly regulated in both knockout and control retinae. Immunohistochemistry for tyrosine hydroxylase and choline acetyltransferase revealed no differences in staining patterns in the two genotypes. mRNA and protein levels of galanin, a putative neuroprotective factor and positive regulator of neuron survival and axonal regeneration, were prominently upregulated after crush in knockout retinae at day 3, as compared with control retinae, suggesting that GDF-15 acts as a physiological regulator of galanin. GDF-15 is therefore prominently upregulated in the retina after optic nerve crush but does not directly interfere with the magnitude and temporal progression of RGC death.


Subject(s)
Growth Differentiation Factor 15/metabolism , Optic Nerve Injuries/metabolism , Retina/metabolism , Retinal Ganglion Cells/metabolism , Animals , Apoptosis , Cell Survival , Growth Differentiation Factor 15/biosynthesis , Growth Differentiation Factor 15/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Crush , Optic Nerve/metabolism , RNA, Messenger/biosynthesis , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...