Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 685: 259-272, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31176213

ABSTRACT

Macroalgae (seaweed) has been shown to be an effective environmental indicator. We investigate the trace element chemistry of macroalgae samples from locations along the Firth of Forth and Forth Estuary in Scotland. The overall trend in elemental abundance (Os ≪ Re < Ag < U < Cd < Co < Ni < Pb < Cu < As < Zn ≪ I), and changes along the estuary (seawards: increase As, I, Cd, U, Re, Os; decrease Pb, Cu; mid-estuary peak Zn; based on certain species), are controlled by a number of factors, including: salinity, mixing and macroalgal species differences. Within the same macroalgal species, some elemental abundances (As, I, Pb, Cu, Cd and U) are affected by mixing between freshwater riverine and North Sea marine saltwater. Additional mixing of natural and anthropogenic inputs from the surrounding geology and industry are also observed, affecting Zn, Ni, Co, Re and Os. Macroalgae is also an increasingly popular food, with some species harvested in the Firth of Forth. Iodine (67-5061 ppm), lead (0.047-4.1 ppm) and cadmium (0.006-0.93 ppm) macroalgal abundances are at safe levels for human consumption (WHO limits). However, many samples exceed the American (3 ppm) and Australian (1 ppm) limits for inorganic arsenic in macroalgae, with values ranging 0-67 ppm. In most of the samples, soaking and cooking the macroalgae reduced the inorganic arsenic content to within the American and Australian limits. However, this has further implications if the macroalgae is used to cook soups (e.g., Dashi), as the leached elements become a significant component of the soup.


Subject(s)
Environmental Monitoring , Seaweed/chemistry , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Arsenicals , Estuaries , Salinity , Seawater/chemistry
2.
J Environ Qual ; 37(6): 2221-31, 2008.
Article in English | MEDLINE | ID: mdl-18948475

ABSTRACT

The total metal content of the soil or total metal concentration in the soil solution is not always a good indicator for metal availability to plants. Therefore, several speciation techniques have been developed that measure a defined fraction of the total metal concentration in the soil solution. In this study the Donnan Membrane Technique (DMT) was used to measure free metal ion concentrations in CaCl(2) extractions (to mimic the soil solution, and to work under standardized conditions) of 10 different soils, whereas diffusive gradients in thin-films (DGT) and scanning chronopotentiometry (SCP) were used to measure the sum of free and labile metal concentrations in the CaCl(2) extracts. The DGT device was also exposed directly to the (wetted) soil (soil-DGT). The metal concentrations measured with the speciation techniques are related to the metal adsorption at the root surface of ryegrass (Lolium perenne L.), to be able to subsequently predict metal uptake. In most cases the metal adsorption related pH-dependently to the metal concentrations measured by DMT, SCP, and DGT in the CaCl(2) extract. However, the relationship between metal adsorption at the root surface and the metal concentrations measured by the soil-DGT was not-or only slightly-pH dependent. The correlations between metal adsorption at the root surface and metal speciation detected by different speciation techniques allow discussion about rate limiting steps in biouptake and the contribution of metal complexes to metal bioavailability.


Subject(s)
Lolium/metabolism , Metals/chemistry , Metals/metabolism , Plant Roots/metabolism , Soil/analysis , Adsorption , Calcium Chloride , Potentiometry
3.
Environ Sci Technol ; 40(6): 1934-41, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16570618

ABSTRACT

Several techniques for speciation analysis of Cu, Zn, Cd, Pb, and Ni are used in freshwater systems and compared with respect to their performance and to the metal species detected. The analytical techniques comprise the following: (i) diffusion gradients in thin-film gels (DGT); (ii) gel integrated microelectrodes combined to voltammetric in situ profiling system (GIME-VIP); (iii) stripping chronopotentiometry (SCP); (iv) flow-through and hollow fiber permeation liquid membranes (FTPLM and HFPLM); (v) Donnan membrane technique (DMT); (vi) competitive ligand-exchange/stripping voltammetry (CLE-SV). All methods could be used both under hardwater and under softwater conditions, although in some cases problems with detection limits were encountered at the low total concentrations. The detected Cu, Cd, and Pb concentrations decreased in the order DGT > or = GIME-VIP > or = FTPLM > or = HFPLM approximately = DMT (>CLE-SV for Cd), detected Zn decreased as DGT > or = GIME-VIP and Ni as DGT > DMT, in agreement with the known dynamic features of these techniques. Techniques involving in situ measurements (GIME-VIP) or in situ exposure (DGT, DMT, and HFPLM) appear to be appropriate in avoiding artifacts which may occur during sampling and sample handling.


Subject(s)
Environmental Monitoring/methods , Fresh Water/analysis , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Artifacts , Denmark , Environmental Monitoring/instrumentation , Reproducibility of Results , Sensitivity and Specificity , Time Factors
4.
Environ Sci Technol ; 40(6): 1942-9, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16570619

ABSTRACT

Measurements of trace metal species in situ in a softwater river, a hardwater lake, and a hardwater stream were compared to the equilibrium distribution of species calculated using two models, WHAM 6, incorporating humic ion binding model VI and visual MINTEQ incorporating NICA-Donnan. Diffusive gradients in thin films (DGT) and voltammetry at a gel integrated microelectrode (GIME) were used to estimate dynamic species that are both labile and mobile. The Donnan membrane technique (DMT) and hollow fiber permeation liquid membrane (HFPLM) were used to measure free ion activities. Predictions of dominant metal species using the two models agreed reasonably well, even when colloidal oxide components were considered. Concentrations derived using GIME were generally lower than those from DGT, consistent with calculations of the lability criteria that take into account the smaller time window available forthe fluxto GIME. Model predictions of free ion activities generally did not agree with measurements, highlighting the need for further work and difficulties in obtaining appropriate input data.


Subject(s)
Environmental Monitoring/methods , Metals/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Benzopyrans/analysis , Carbonates/analysis , Forecasting , Humic Substances/analysis , Models, Biological , Reproducibility of Results , Sensitivity and Specificity
5.
J Environ Monit ; 7(6): 559-67, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15931415

ABSTRACT

An on-line method has been developed for separating inorganic and organic bound uranium species present in river water samples. The method utilised a small chelating resin (Hyphan) column incorporated into the sample introduction manifold of an ICP-MS instrument. The method was evaluated for samples from rivers on Dartmoor (Devon, UK), an area of granite overlain with peat bogs. The results indicate that organic-uranium species form a major proportion (80%) of the total dissolved uranium present. Further work with synthetic water samples indicated that the level of dissolved organic carbon played a greater role in determining the level of organic-uranium species than did sample pH. Computer models for the water samples were constructed using the WHAM program (incorporating uranium data from the Nuclear Energy Agency Thermochemical Database project) in order to predict the levels of organic-uranium species that would form. By varying the proportion of humic and fulvic acids used in the humic component, predictions within 10% of the experimental results were obtained. The program did exhibit a low bias at higher pH values (7.5) and low organic carbon concentrations (0.5 microg ml(-1)), but under the natural conditions prevalent in the Dartmoor water samples, the model predictions were successful.


Subject(s)
Computer Simulation , Environmental Monitoring , Rivers/chemistry , Uranium/analysis , Water Pollutants, Radioactive/analysis , Benzopyrans/analysis , Forecasting , Humic Substances/analysis , Hydrogen-Ion Concentration , Mass Spectrometry
6.
Environ Sci Technol ; 39(2): 624-30, 2005 Jan 15.
Article in English | MEDLINE | ID: mdl-15707064

ABSTRACT

The performance of the technique of diffusive gradients in thin films (DGT) was characterized in well-defined systems containing cadmium with chloride and nitrate ions, simple organic ligands (nitrilotriacetic acid and diglycolic acid), and Suwannee river fulvic acid for the pH range 5-8. Cd was fully labile in all Cd, Cl-, and NO3- solutions tested (I= 0.1 and 0.01 M), even atvery low Cd concentrations (10 nM), consistent with there being no binding of Cd to the diffusive gel. Diffusion coefficients of Cd-nitritotriacetic acid (NTA) and Cd-diglycolic acid (DGA) species were measured and found to be ca. 25-30% lower than the equivalent coefficient for free metal ions. These values were used to calculate concentrations of labile Cd from DGT measurements in solutions of Cd with NTA or DGA. Cd-NTA and Cd-DGA species were found to be fully DGT-labile. DGT devices that used a diffusive gel with a reduced pore size, which retarded the passage of fulvic acid species through the gel, were used to estimate the proportion of Cd complexed by fulvic acid. These results were compared with predictions of the solution speciation from models with default parameter values. ECOSAT, incorporating the NICA-Donnan model, correctly predicted the magnitude of the binding and its pH dependence, while predictions from WHAM V (with humic ion binding model V) and WHAM 6 (with humic ion binding model VI) were less satisfactory at predicting the pH dependence. Reasonable fits to the data could be obtained from WHAM 6 when the effective binding constant log K(MA) was changed from 1.6 to 1.5, the value of deltaLK1 from 2.8 to 1.0 to minimize the dependence on pH, and the value of deltaLK2 from 1.48 to 1.0 to decrease the strength of the strong bidentate and tridentate binding sites.


Subject(s)
Cadmium/chemistry , Models, Theoretical , Water Pollutants/analysis , Benzopyrans/chemistry , Biological Availability , Diffusion , Forecasting , Hydrogen-Ion Concentration , Ligands
7.
J Environ Monit ; 4(4): 528-32, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12195995

ABSTRACT

Computer models have found widespread application in order to help elucidate and predict changes in environmental systems. One such application is the prediction of trace metal speciation in aqueous systems. This is achieved by solving a set of non-linear equations involving equilibrium constants for all the components in the system, within mass and charge balance constraints. In this study a comparison of the predicted uranium speciation from two computer programs, WHAM and PHREEQCI, is used to illustrate the effect variations in thermodynamic data can have on the models produced. Using the original thermodynamic data provided with the models, WHAM predicted the UO2(2+) ion as the major species (84%) while PHREEQCI predicted UO2(HPO4)2(2-) as the major species (86%). Substituting uranium data from the Nuclear Energy Agency Thermochemical Database project (NEA-TDB) into both programs produced similar results from each program, with UO2F+ predicted to dominate (68%) in a groundwater sample. Natural water samples often contain humic substances. The possible interaction of such substances with uranium was also modelled. The WHAM program includes a discreet site electrostatic humic substance model, however in order to use the PHREEQCI program to model humic substance interactions, a 'model fulvic acid' dataset was added to the program. These models predicted 85 to 98% uranium-humic substance species at neutral pH. This indicates that humic substances do need to be taken into account when modelling uranium speciation in natural water samples.


Subject(s)
Computer Simulation , Uranium/chemistry , Water Pollutants, Radioactive/analysis , Forecasting , Humic Substances/chemistry , Hydrogen-Ion Concentration , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...