Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Atmos Chem Phys Discuss ; 13(10)2013 Oct.
Article in English | MEDLINE | ID: mdl-24363666

ABSTRACT

An overview of acetaldehyde exchange above a managed temperate mountain grassland in Austria over four growing seasons is presented. The meadow acted as a net source of acetaldehyde in all four years, emitting between 7 and 28 mg C m-2 over the whole growing period. The cutting of the meadow resulted in huge acetaldehyde emission bursts on the day of harvesting or one day later. During undisturbed conditions, both uptake and emission fluxes were recorded. The bidirectional nature of acetaldehyde fluxes was also reflected by clear diurnal cycles during certain time periods, indicating strong deposition processes before the 1st cut and emission towards the end of the growing season. The analysis of acetaldehyde compensation points revealed a complex relationship between ambient acetaldehyde mixing ratios and respective fluxes, significantly influenced by multiple environmental parameters and variable throughout the year. As a major finding of this study, we identified both a positive and negative correlation between concentration and flux on a daily scale, where soil temperature and soil water content were the most significant factors in determining the direction of the slope. In turn, this bidirectional relationship on a daily scale resulted in compensation points between 0.40 ppbv and 0.54 ppbv, which could be well explained by collected ancillary data. We conclude that in order to model acetaldehyde fluxes at the site in Neustift on a daily scale over longer time periods, it is crucial to know the type of relationship, i.e. the direction of the slope, between mixing ratios and fluxes on a given day.

2.
J Med Primatol ; 38(4): 219-27, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19602098

ABSTRACT

BACKGROUND: A sub-optimal intrauterine environment alters the trajectory of fetal development with profound effects on life-time health. Altered methylation, a proposed epigenetic mechanism responsible for these changes, has been studied in non-primate species but not nonhuman primates. We tested the hypotheses that global methylation in fetal baboon demonstrates organ specificity, gestational age specificity, and changes with maternal nutritional status. METHODS: We measured global DNA methylation in fetuses of control fed (CTR) and nutrient restricted mothers fed 70% of controls (MNR) for brain, kidney, liver and heart at 0.5 and 0.9 gestation (G). RESULTS: We observed organ and gestation specific changes that were modified by maternal diet. Methylation in CTR fetuses was highest in frontal cortex and lowest in liver. MNR decreased methylation in 0.5G kidney and increased methylation in 0.9G kidney and frontal cortex. CONCLUSION: These results demonstrate a potential epigenetic mechanism whereby reduced maternal nutrition has long-term programming effects on fetal organ development.


Subject(s)
Animal Nutritional Physiological Phenomena , DNA Methylation/physiology , Fetus/metabolism , Maternal Nutritional Physiological Phenomena , Papio/metabolism , Animals , Brain/anatomy & histology , Female , Fetus/anatomy & histology , Gestational Age , Heart/anatomy & histology , Kidney/anatomy & histology , Liver/anatomy & histology , Organ Size , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...