Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36675180

ABSTRACT

Colorectal cancer (CRC) is the second deadliest cancer in the world. Besides APC and p53 alterations, the PI3K/AKT/MTOR and MAPK pathway are most commonly mutated in CRC. So far, no treatment options targeting these pathways are available in routine clinics for CRC patients. We systematically analyzed the response of CRC cells to the combination of small molecular inhibitors targeting the PI3K and MAPK pathways. We used CRC cells in 2D, 3D spheroid, collagen gel cultures and freshly isolated organoids for drug response studies. Readout for drug response was spheroid or organoid growth, spheroid outgrowth, metabolic activity, Western blotting and immunofluorescence. We found profound tumor cell destruction under treatment with a combination of Torin 1 (inhibiting mTOR), MK2206 (targeting AKT) and selumetinib (inhibiting MEK) in 3D but not in 2D. Induction of cell death was due to apoptosis. Western blot analysis revealed efficient drug action. Gedatolisib, a dual PI3K/mTOR inhibitor, could replace Torin1/MK2206 with similar efficiency. The presence of PI3K and/or RAS-RAF-MAPK pathway mutations accounted for treatment responsiveness. Here, we identified a novel, efficient therapy, which induced proliferation stop and tumor cell destruction in vitro based on the genetic background. These preclinical findings show promise to further test this combi-treatment in vivo in mice and to potentially develop a mutation specific targeted therapy for CRC patients.


Subject(s)
Colonic Neoplasms , Mitogen-Activated Protein Kinase Kinases , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Cell Line, Tumor , Cell Proliferation , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Mutation , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Humans
2.
J Immunother Cancer ; 8(2)2020 08.
Article in English | MEDLINE | ID: mdl-32817359

ABSTRACT

BACKGROUND: Tumor-associated macrophages (TAM) constitute the most abundant immune cells in the tumor stroma initiating pro-inflammatory (M1) or immunosuppressive (M2) responses depending on their polarization status. Advances in tumor immunotherapy call for a detailed understanding of potential immunogenic mechanisms of irradiation routinely applied in rectal cancer patients. METHODS: To test the effects of radiotherapy on TAM, we ex vivo irradiated tissue samples of human rectal cancer and assessed the phenotype by flow cytometry. We furthermore evaluated the distribution of leucocyte subsets in tissue sections of patients after short-course radiotherapy and compared findings to non-pretreated rectal cancer using an immunostaining approach. Organotypic assays (OTA) consisting of macrophages, cancer-associated fibroblast and cancer cell lines were used to dissect the immunological consequences of irradiation in macrophages. RESULTS: We demonstrate that short-course neoadjuvant radiotherapy in rectal cancer patients is associated with a shift in the polarization of TAM towards an M1-like pro-inflammatory phenotype. In addition, ex vivo irradiation caused an increase in the phagocytic activity and enhanced expression of markers associated with stimulatory signals necessary for T-cell activation. In OTA we observed that this alteration in macrophage polarization could be mediated by extracellular vesicles (EV) derived from irradiated tumor cells. We identified high mobility group box 1 in EV from irradiated tumor cells as a potential effector signal in that crosstalk. CONCLUSIONS: Our findings highlight macrophages as potential effector cells upon irradiation in rectal cancer by diminishing their immunosuppressive phenotype and activate pro-inflammation. Our data indicate that clinically applied short-term radiotherapy for rectal cancer may be exploited to stimulate immunogenic macrophages and suggest to target the polarization status of macrophages to enhance future immunotherapeutic strategies.


Subject(s)
Extracellular Vesicles/immunology , Macrophages/immunology , Rectal Neoplasms/radiotherapy , Tumor Microenvironment/immunology , Humans , Rectal Neoplasms/pathology
3.
Angiogenesis ; 23(2): 159-177, 2020 05.
Article in English | MEDLINE | ID: mdl-31667643

ABSTRACT

WNT2 acts as a pro-angiogenic factor in placental vascularization and increases angiogenesis in liver sinusoidal endothelial cells (ECs) and other ECs. Increased WNT2 expression is detectable in many carcinomas and participates in tumor progression. In human colorectal cancer (CRC), WNT2 is selectively elevated in cancer-associated fibroblasts (CAFs), leading to increased invasion and metastasis. However, if there is a role for WNT2 in colon cancer, angiogenesis was not addressed so far. We demonstrate that WNT2 enhances EC migration/invasion, while it induces canonical WNT signaling in a small subset of cells. Knockdown of WNT2 in CAFs significantly reduced angiogenesis in a physiologically relevant assay, which allows precise assessment of key angiogenic properties. In line with these results, expression of WNT2 in otherwise WNT2-devoid skin fibroblasts led to increased angiogenesis. In CRC xenografts, WNT2 overexpression resulted in enhanced vessel density and tumor volume. Moreover, WNT2 expression correlates with vessel markers in human CRC. Secretome profiling of CAFs by mass spectrometry and cytokine arrays revealed that proteins associated with pro-angiogenic functions are elevated by WNT2. These included extracellular matrix molecules, ANG-2, IL-6, G-CSF, and PGF. The latter three increased angiogenesis. Thus, stromal-derived WNT2 elevates angiogenesis in CRC by shifting the balance towards pro-angiogenic signals.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Colonic Neoplasms/blood supply , Colonic Neoplasms/pathology , Neovascularization, Pathologic/chemically induced , Wnt2 Protein/metabolism , Wnt2 Protein/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Coculture Techniques , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Culture Media, Conditioned/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/physiology , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Tumor Microenvironment/physiology
4.
JCI Insight ; 4(20)2019 10 17.
Article in English | MEDLINE | ID: mdl-31619583

ABSTRACT

The mechanistic target of rapamycin complex 2 (mTORC2) is a potentially novel and promising anticancer target due to its critical roles in proliferation, apoptosis, and metabolic reprogramming of cancer cells. However, the activity and function of mTORC2 in distinct cells within malignant tissue in vivo is insufficiently explored. Surprisingly, in primary human and mouse colorectal cancer (CRC) samples, mTORC2 signaling could not be detected in tumor cells. In contrast, only macrophages in tumor-adjacent areas showed mTORC2 activity, which was downregulated in stromal macrophages residing within human and mouse tumor tissues. Functionally, inhibition of mTORC2 by specific deletion of Rictor in macrophages stimulated tumorigenesis in a colitis-associated CRC mouse model. This phenotype was driven by a proinflammatory reprogramming of mTORC2-deficient macrophages that promoted colitis via the cytokine SPP1/osteopontin to stimulate tumor growth. In human CRC patients, high SPP1 levels and low mTORC2 activity in tumor-associated macrophages correlated with a worsened clinical prognosis. Treatment of mice with a second-generation mTOR inhibitor that inhibits mTORC2 and mTORC1 exacerbated experimental colorectal tumorigenesis in vivo. In conclusion, mTORC2 activity is confined to macrophages in CRC and limits tumorigenesis. These results suggest activation but not inhibition of mTORC2 as a therapeutic strategy for colitis-associated CRC.


Subject(s)
Carcinogenesis/immunology , Colitis, Ulcerative/pathology , Colorectal Neoplasms/immunology , Macrophages/immunology , Mechanistic Target of Rapamycin Complex 2/metabolism , Animals , Carcinogenesis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cells, Cultured , Colitis, Ulcerative/blood , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/immunology , Colon/cytology , Colon/drug effects , Colon/immunology , Colon/pathology , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Colorectal Neoplasms/prevention & control , Dextran Sulfate/toxicity , Disease Models, Animal , Female , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Kaplan-Meier Estimate , Macrophages/metabolism , Male , Mechanistic Target of Rapamycin Complex 2/antagonists & inhibitors , Mice , Mice, Transgenic , Morpholines/pharmacology , Osteopontin/blood , Osteopontin/metabolism , Primary Cell Culture , Prognosis , Survival Rate
5.
SLAS Discov ; 22(5): 602-613, 2017 06.
Article in English | MEDLINE | ID: mdl-28346097

ABSTRACT

Angiogenesis is a promising target for anticancer therapies, but also for treating other diseases with pathologic vessel development. Targeting the vascular endothelial growth factor (VEGF) pathway did not proof as effective as expected due to emerging intrinsic resistance mechanisms, as well as stromal contributions leading to drug insensitivity. Therefore, alternative strategies affecting the interaction of endothelial cells (ECs) with other stromal cells seem to be more promising. Human preclinical in vitro angiogenesis models successfully recapitulating these interactions are rare, and two-dimensional (2D) cell cultures cannot mimic tissue architecture in vivo. Consequently, models combining three-dimensionality with heterotypic cell interaction seem to be better suited. Here, we report on an improved human fibroblast-EC coculture assay mimicking sprouting angiogenesis from EC-covered microbeads resembling existing endothelial structures. Culture conditions were optimized to assess pro- and antiangiogenic compounds. Important characteristics of angiogenesis, that is, the number of sprouts and branch points, sprout length protrusion, and overall vessel structure areas, were quantified. Notably, the endothelial sprouts display lumen formation and basal membrane establishment. In this model, angiogenesis can be inhibited by genetic interference of pro-angiogenic factors expressed in the fibroblasts. Moreover, bona fide antiangiogenic drugs decreased, whereas pro-angiogenic factors increased vessel formation in 24-well and 96-well settings, demonstrating the applicability for screening approaches.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Biological Assay/methods , Coculture Techniques/methods , Neovascularization, Pathologic/drug therapy , Angiogenesis Inducing Agents/metabolism , Cell Culture Techniques , Cells, Cultured , Fibroblasts/drug effects , Fibroblasts/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Neovascularization, Pathologic/metabolism , Vascular Endothelial Growth Factor A/metabolism
6.
J Cell Sci ; 130(1): 203-218, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27663511

ABSTRACT

Three-dimensional (3D) cancer models are used as preclinical systems to mimic physiologic drug responses. We provide evidence for strong changes of proliferation and metabolic capacity in three dimensions by systematically analyzing spheroids of colon cancer cell lines. Spheroids showed relative lower activities in the AKT, mammalian target of rapamycin (mTOR) and S6K (also known as RPS6KB1) signaling pathway compared to cells cultured in two dimensions. We identified spatial alterations in signaling, as the level of phosphorylated RPS6 decreased from the spheroid surface towards the center, which closely coordinated with the tumor areas around vessels in vivo These 3D models displayed augmented anti-tumor responses to AKT-mTOR-S6K or mitogen-activated protein kinase (MAPK) pathway inhibition compared to those in 2D models. Inhibition of AKT-mTOR-S6K resulted in elevated ERK phosphorylation in 2D culture, whereas under these conditions, ERK signaling was reduced in spheroids. Inhibition of MEK1 (also known as MAP2K1) led to decreased AKT-mTOR-S6K signaling in 3D but not in 2D culture. These data indicate a distinct rewiring of signaling in 3D culture and during treatment. Detached tumor-cell clusters in vessels, in addition to circulating single tumor cells, play a putative role in metastasis in human cancers. Hence, the understanding of signaling in spheroids and the responses in the 3D models upon drug treatment might be beneficial for anti-cancer therapies.


Subject(s)
Cell Culture Techniques/methods , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Shape/drug effects , Humans , MAP Kinase Signaling System/drug effects , Phenotype , Phosphorylation/drug effects , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology
7.
Semin Cancer Biol ; 35: 107-24, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26320002

ABSTRACT

Solid cancers are not simple accumulations of malignant tumor cells but rather represent complex organ-like structures. Despite a more chaotic general appearance as compared to the highly organized setup of healthy tissues, cancers still show highly differentiated structures and a close interaction with and dependency on the interwoven connective tissue. This complexity within cancers is not known in detail at the molecular level so far. The first part of this article will shortly describe the technology and strategies to quantify and dissect the heterogeneity in human solid cancers. Moreover, there is urgent need to better understand human cancer biology since the development of novel anti-cancer drugs is far from being efficient, predominantly due to the scarcity of predictive preclinical models. Hence, in vivo and in vitro models were developed, which better recapitulate the complexity of human cancers, by their intrinsic three-dimensional nature and the cellular heterogeneity and allow functional intervention for hypothesis testing. Therefore, in the second part 3D in vitro cancer models are presented that analyze and depict the heterogeneity in human cancers. Advantages and drawbacks of each model are highlighted and their suitability to preclinical drug testing is discussed.


Subject(s)
Carcinoma/metabolism , Carcinoma/pathology , Cell Communication , Models, Biological , Tumor Microenvironment , Animals , Carcinoma/etiology , Cell Communication/genetics , Disease Models, Animal , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Spheroids, Cellular , Stromal Cells/metabolism , Stromal Cells/pathology , Tissue Culture Techniques , Tumor Cells, Cultured , Tumor Microenvironment/genetics
8.
J Biomol Screen ; 19(7): 1047-59, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24758920

ABSTRACT

Spheroid-based cellular screening approaches represent a highly physiologic experimental setup to identify novel anticancer drugs and an innovative preclinical model to reduce the high failure rate of anticancer compounds in clinical trials. The resazurin reduction (RR) assay, known as the alamarBlue or CellTiter-Blue assay, is frequently used to determine cell viability/proliferation capacity in eukaryotic cells. Whether this assay is applicable to assess viability in multicellular spheroids has not been evaluated. We analyzed the RR assay to measure cytotoxic and/or cytostatic responses in tumor cell spheroids compared with conventional 2D cultures. We found that tight cell-cell interactions in compact spheroids hamper resazurin uptake and its subsequent reduction to resorufin, leading to lowered reduction activity in relation to the actual cellular health/cell number. Treatment with staurosporine disrupted close cell-cell contacts, which increased resazurin reduction compared with untreated controls. Loss of tight junctions by trypsinization or addition of EGTA or EDTA restored high resazurin reduction rates in untreated spheroids. In conclusion, the RR assay is unsuited to quantitatively measure cellular health/cell number in compact spheroids. However, it can be used to distinguish between cytotoxic versus cytostatic compounds in spheroids. Restoration of the correlation of cell viability/number to resazurin reduction capacity can be achieved by disruption of tight junctions.


Subject(s)
Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor/methods , Neoplasms/drug therapy , Oxazines/chemistry , Xanthenes/chemistry , Apoptosis , Biological Assay , Cell Communication , Cell Line, Tumor , Cell Proliferation , Cell Survival , Edetic Acid/chemistry , Egtazic Acid/chemistry , HT29 Cells , Humans , Microscopy, Confocal , Spheroids, Cellular , Staurosporine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...