Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Nat Commun ; 11(1): 5530, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33139713

ABSTRACT

Spectral fingerprints of molecules are mostly accessible in the terahertz (THz) and mid-infrared ranges, such that efficient molecular-detection technologies rely on broadband coherent light sources at such frequencies. If THz Quantum Cascade Lasers can achieve octave-spanning bandwidth, their tunability and wavelength selectivity are often constrained by the geometry of their cavity. Here we introduce an adaptive control scheme for the generation of THz light in Quantum Cascade Random Lasers, whose emission spectra are reshaped by applying an optical field that restructures the permittivity of the active medium. Using a spatial light modulator combined with an optimization procedure, a beam in the near infrared (NIR) is spatially patterned to transform an initially multi-mode THz random laser into a tunable single-mode source. Moreover, we show that local NIR illumination can be used to spatially sense complex near-field interactions amongst modes. Our approach provides access to new degrees of freedom that can be harnessed to create broadly-tunable sources with interesting potential for applications like self-referenced spectroscopy.

2.
Opt Express ; 23(12): 15278-89, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26193509

ABSTRACT

We study THz-emission from a plasma driven by an incommensurate-frequency two-colour laser field. A semi-classical transient electron current model is derived from a fully quantum-mechanical description of the emission process in terms of sub-cycle field-ionization followed by continuum-continuum electron transitions. For the experiment, a CEP-locked laser and a near-degenerate optical parametric amplifier are used to produce two-colour pulses that consist of the fundamental and its near-half frequency. By choosing two incommensurate frequencies, the frequency of the CEP-stable THz-emission can be continuously tuned into the mid-IR range. This measured frequency dependence of the THz-emission is found to be consistent with the semi-classical transient electron current model, similar to the Brunel mechanism of harmonic generation.

3.
Nat Commun ; 5: 4034, 2014 Jun 13.
Article in English | MEDLINE | ID: mdl-24925314

ABSTRACT

When two resonant modes in a system with gain or loss coalesce in both their resonance position and their width, a so-called exceptional point occurs, which acts as a source of non-trivial physics in a diverse range of systems. Lasers provide a natural setting to study such non-Hermitian degeneracies, as they feature resonant modes and a gain material as their basic constituents. Here we show that exceptional points can be conveniently induced in a photonic molecule laser by a suitable variation of the applied pump. Using a pair of coupled microdisk quantum cascade lasers, we demonstrate that in the vicinity of these exceptional points the coupled laser shows a characteristic reversal of its pump dependence, including a strongly decreasing intensity of the emitted laser light for increasing pump power.

4.
Sci Rep ; 4: 4269, 2014 Mar 10.
Article in English | MEDLINE | ID: mdl-24608677

ABSTRACT

We present the design, fabrication and characterisation of an intersubband detector employing a resonant metamaterial coupling structure. The semiconductor heterostructure relies on a conventional THz quantum-cascade laser design and is operated at zero bias for the detector operation. The same active region can be used to generate or detect light depending on the bias conditions and the vertical confinement. The metamaterial is processed directly into the top metal contact and is used to couple normal incidence radiation resonantly to the intersubband transitions. The device is capable of detecting light below and above the reststrahlenband of gallium-arsenide corresponding to the mid-infrared and THz spectral region.

5.
Opt Express ; 20(21): 23832-7, 2012 Oct 08.
Article in English | MEDLINE | ID: mdl-23188348

ABSTRACT

We demonstrate terahertz quantum-cascade lasers with a 30 µm thick double-metal waveguide, which are fabricated by stacking two 15 µm thick active regions using a wafer bonding process. By increasing the active region thickness more optical power is generated inside the cavity, the waveguide losses are decreased and the far-field is improved due to a larger facet aperture. In this way the output power is increased by significantly more than a factor of 2 without reducing the maximum operating temperature and without increasing the threshold current.


Subject(s)
Lasers , Quantum Theory , Refractometry/instrumentation , Terahertz Radiation , Equipment Design , Equipment Failure Analysis
6.
Opt Express ; 20(21): 23053-60, 2012 Oct 08.
Article in English | MEDLINE | ID: mdl-23188269

ABSTRACT

In this work, we demonstrate the direct observation of non-equilibrium intersubband dynamics in a modulation-doped multiple quantum well sample induced by intense terahertz pulses. The transmission spectra show a clear dependence on the incident THz field strength, which gives rise to a multitude of nonlinear optical effects that go beyond the standard textbook two-level description of light-matter interaction. Of special interest is thereby the multiple octave spanning bandwidth of the used single-cycle THz pulses, which allows the phase-locked coupling of adjacent intersubband transitions. Examples of this interaction include the efficient, coherent population transfer, the THz induced undressing of collective excitations, and the THz Stark effect.


Subject(s)
Models, Theoretical , Nonlinear Dynamics , Quantum Theory , Scattering, Radiation , Terahertz Radiation , Computer Simulation , Light
7.
Opt Express ; 19(14): 13700-6, 2011 Jul 04.
Article in English | MEDLINE | ID: mdl-21747526

ABSTRACT

We present a method of coupling free-space terahertz radiation to intersubband transitions in semiconductor quantum wells using an array of meta-atoms. Owing to the resonant nature of the interaction between metamaterial and incident light and the field enhancement in the vicinity of the metal structure, the coupling efficiency of this method is very high and the energy conversion ratio from in-plane to z field reaches values on the order of 50%. To identify the role of different aspects of this coupling, we have used a custom-made finite-difference time-domain code. The simulation results are supplemented by transmission measurements on modulation-doped GaAs/AlGaAs parabolic quantum wells which demonstrate efficient strong light-matter coupling between meta-atoms and intersubband transitions for normal incident electromagnetic waves.


Subject(s)
Models, Theoretical , Terahertz Radiation , Computer Simulation , Quantum Theory , Scattering, Radiation
8.
Opt Express ; 17(22): 20321-6, 2009 Oct 26.
Article in English | MEDLINE | ID: mdl-19997259

ABSTRACT

We have studied the coherent intercavity coupling of the evanescent fields of two microdisk terahertz quantum-cascade lasers. The electrically controllable optical coupling of the single-mode operating lasers has been observed for cavity spacings up to 30 mum. The strongest coupled photonic molecule with 2 mum intercavity spacing allows to conditionally switch the optical emission by the electrical modulation of only one microdisk. The lasing threshold characteristics demonstrate the linear dependence of the gain of a quantum-cascade laser on the applied electric field.


Subject(s)
Electronics/instrumentation , Lasers , Refractometry/instrumentation , Transducers , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Miniaturization , Photons , Reproducibility of Results , Sensitivity and Specificity
9.
Opt Express ; 17(2): 941-6, 2009 Jan 19.
Article in English | MEDLINE | ID: mdl-19158909

ABSTRACT

We present the design and the realization of active photonic crystal (PhC) semiconductor lasers. The PhC consists of semiconductor nanostructure pillars which provide gain at a quantized transition energy. The vertical layer sequence is that of a terahertz quantum cascade laser. Thereby, the artificial crystal itself provides the optical gain and the lateral confinement. The cavities do not rely on a central defect, the lasing is observed in flat-band regions at high symmetry points. The experimental results are in excellent agreement with the finite-difference time-domain simulations. For the vertical confinement a double-metal waveguide is used. The lasers are showing a stable single-mode emission under all driving conditions. Varying the period of the PhC allows to tune the frequency by 400 GHz.

10.
Opt Express ; 15(19): 12418-24, 2007 Sep 17.
Article in English | MEDLINE | ID: mdl-19547612

ABSTRACT

We present the design and the fabrication of photonic crystals with a complete bandgap for TM-modes used as a resonator for terahertz quantum-cascade lasers (QCL), which are lasing around 2.7 THz. The emission of the devices with and without a photonic crystal shows a shift in the emission from the gain maximum to the bandgap of the crystal. The devices are built up by a core, which provides the optical gain, and by a surrounding photonic crystal, which acts as a frequency selective mirror. The whole device is processed into a double-metal waveguide.

12.
Phys Rev Lett ; 89(4): 047402, 2002 Jul 22.
Article in English | MEDLINE | ID: mdl-12144499

ABSTRACT

Coherent electron transport is studied in an electrically driven quantum cascade structure. Ultrafast quantum transport from the injector into the upper laser state is investigated by midinfrared pump-probe experiments directly monitoring the femtosecond saturation and subsequent recovery of electrically induced optical gain. We demonstrate for the first time pronounced gain oscillations giving evidence for a coherent electron motion. The coexistence of a long dephasing time of quantum coherence and high Coulomb scattering rates in the injector points to the occurrence of scattering-induced coherence in electron transport.

13.
Phys Rev Lett ; 88(22): 226803, 2002 Jun 03.
Article in English | MEDLINE | ID: mdl-12059443

ABSTRACT

We show theoretically that in quantum wells subjected to a strong magnetic field the intersubband current peaks at magnetic field values, which reveal the underlying specific intersubband scattering mechanism. We have designed and grown a superlattice structure in which such current oscillations are clearly visible, and in which the transition from the purely single-electron to the mixed single- and two-electron scattering regimes can be observed by tuning the applied voltage bias. The measurements were conducted in ultrahigh magnetic fields (up to 45 T) to obtain the full spectrum of the current oscillations.

14.
Phys Rev Lett ; 86(13): 2850-3, 2001 Mar 26.
Article in English | MEDLINE | ID: mdl-11290055

ABSTRACT

We study tunneling through resonant tunneling diodes (RTD) with very long emitter drift regions (up to 2 microm). In such diodes, charge accumulation occurs near the double barrier on the emitter side, in a self-induced potential pocket. This leads to a substantial enhancement of the wave function overlap between states of the pocket and the RTD, and, consequently, to increased off-resonant current mediated by various scattering processes. For RTD with the longest drift region (2 microm), an additional strong current peak is observed between the first and the second resonant peaks. We attribute this pronounced feature to the intersubband transitions mediated by resonant emission of intersubband plasmons.

15.
Opt Lett ; 26(20): 1618-20, 2001 Oct 15.
Article in English | MEDLINE | ID: mdl-18049682

ABSTRACT

The electric field change of a femtosecond mid-infrared (MIR) pulse reflected by a new type of Bragg mirror is directly measured by time-resolved cross-correlation spectroscopy. The refractive-index contrast of the plasma Bragg mirror is achieved by use of different doping levels of only one type of semiconductor material (n(+) -doped GaAs and undoped GaAs). The direct measurement of the time dependence of the electric field of a reflected MIR pulse permits the observation of a noninstantaneous response of a Bragg mirror compared with a metallic surface, which is due to the penetration of the pulse into the multilayer structure.

16.
Opt Lett ; 25(4): 272-4, 2000 Feb 15.
Article in English | MEDLINE | ID: mdl-18059852

ABSTRACT

We present a time-resolved technique to measure optical excitation processes with a time resolution shorter than the oscillation period of the exciting light. Our terahertz (THz) experiments fully resolve the polarization dynamics of electrons in semiconductor heterostructures when they are excited by a THz pulse. The time resolution of the polarization enables us to deduce the population dynamics of the excited state, which includes the dynamics of a virtual population in the case of off-resonant excitation.

17.
Appl Opt ; 39(36): 6926-30, 2000 Dec 20.
Article in English | MEDLINE | ID: mdl-18354705

ABSTRACT

We demonstrate what we believe is the first application of the recently developed electrically pumped GaAs/AlGaAs quantum-cascade lasers in a spectroscopic gas-sensing system by use of hollow waveguides. Laser light with an emission maximum at 10.009 microm is used to investigate the mid-infrared absorption of ethene at atmospheric pressure. We used a 434-mm-long silver-coated silica hollow waveguide as a sensing element, which served as a gas absorption cell. Different mixtures of helium and ethene with known concentrations are flushed through the waveguide while the laser radiation that passes through the waveguide is analyzed with a Fourier-transform infrared spectrometer. The experimentally obtained discrete ethene spectrum agrees well with the calculated spectrum. A detection threshold of 250 parts per million is achieved with the current setup.

SELECTION OF CITATIONS
SEARCH DETAIL
...