Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 12448, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816398

ABSTRACT

Precise control of microparticle movement is crucial in high throughput processing for various applications in scalable manufacturing, such as particle monolayer assembly and 3D bio-printing. Current techniques using acoustic, electrical and optical methods offer precise manipulation advantages, but their scalability is restricted due to issues such as, high input powers and complex fabrication and operation processes. In this work, we introduce the concept of capillary wave tweezers, where mm-scale capillary wave fields are dynamically manipulated to control the position of microparticles in a liquid volume. Capillary waves are generated in an open liquid volume using low frequency vibrations (in the range of 10-100 Hz) to trap particles underneath the nodes of the capillary waves. By shifting the displacement nodes of the waves, the trapped particles are precisely displaced. Using analytical and numerical models, we identify conditions under which a stable control over particle motion is achieved. By showcasing the ability to dynamically control the movement of microparticles, our concept offers a simple and high throughput method to manipulate particles in open systems.

2.
ACS Sustain Chem Eng ; 12(17): 6485-6493, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38699465

ABSTRACT

The synthesis of a high-performance oxidative cross-linked thermoset alkyd coating is described that utilizes a novel recycling strategy from contaminated postconsumer waste polyethylene terephthalate (wPET). A single-stage "depolymerization-repolymerization" process has been developed that allows the exploitation of a waste stream from a commercial PET recycling process with 95% efficiency, which, when copolymerized with glycerol and tall oil fatty acid, delivers a sustainable fatty acid-functional polyester suitable for use in thermoset alkyd coatings. Physical drying challenges have been tackled via the development of a convergent polymer formulation strategy from a single source of wPET and the formulation of the resulting fatty acid-functional polymers with commercial alkyd driers, delivering a thermoset alkyd coating suitable for industrial applications.

3.
ACS Appl Mater Interfaces ; 16(10): 12986-12995, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38426266

ABSTRACT

This paper describes the synthesis and use of multifunctional methacrylic monomers, which contain basic (amine) functional groups, including an example in which an acid-labile tert-butylcarbamate-protected glycine is used to form a novel methacrylic monomer. The "protected" amino acid-derived functional monomer (BOC-Gly-MA) is copolymerized with an epoxide functional methacrylic monomer (GMA), to deliver novel multifunctional polymers, which are processed into powder coatings and used to study filiform corrosion at the surface of an aluminum substrate. The BOC-Gly-MA-containing copolymers were shown to improve a coating's anticorrosion performance, presenting the lowest average filiform corrosion (FFC) track length, total FFC number, and total corroded surface area (CSA) of the coatings investigated. Further to this, a mode of action for the role of BOC-Gly functional polymers in corrosion protection is proposed, supported by both solution and polymer-aluminum interface studies, delivering new insights into the mode of action of pH-responsive polymer coatings.

4.
Carbohydr Polym ; 316: 120999, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37321720

ABSTRACT

Physically-induced depolymerisation procedures are often preferred for obtaining alginate and chitosan oligosaccharides as they either do not use or make minimal use of additional chemicals; therefore, separation of the final products is facile. In this work, solutions of three types of alginate with different mannuronic and guluronic acid residues ratio (M/G ratio) and molecular weights (Mw) and one type of chitosan were non-thermally processed by applying high hydrostatic pressures (HHP) up to 500 MPa (20 min) or pulsed electric fields (PEF) up to 25 kV cm-1 (4000 µm) in the absence or presence of 3 % hydrogen peroxide (H2O2). The impact on the physicochemical properties of alginate and chitosan was investigated by rheology, GPC, XRD, FTIR, and 1H NMR. In the rheological investigations, the apparent viscosities of all samples decreased with increasing shear rate, indicating a non-Newtonian shear-thinning behaviour. GPC results reported Mw reductions that ranged between 8 and 96 % for all treatments. NMR results revealed that HHP and PEF treatment predominantly reduced the M/G ratio of alginate and the degree of deacetylation (DDA) of chitosan, whilst H2O2 promoted an increase in the M/G ratio in alginate and DDA of chitosan. Overall, the present investigation has demonstrated the feasibility of HHP and PEF for rapidly producing alginate and chitosan oligosaccharides.


Subject(s)
Chitosan , Hydrogen Peroxide , Hydrostatic Pressure , Alginates/chemistry , Oligosaccharides
5.
Mater Horiz ; 10(3): 889-898, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36537891

ABSTRACT

The development of high performance, recyclable thermoset materials for applications in plastics, composites, coatings and adhesives requires a synthetic approach where recyclability is designed into the molecular structure of the material. This paper describes a single stage process for the creation of materials from simple, low-cost molecular building blocks, where the polymerisation of liquid epoxy resins and aliphatic amines in the presence of an n-butyl diboronic ester, delivers epoxy-amine-dioxazaborocane materials with tunable physical properties including glass transition temperature (Tg). Mechanical (thermal) recycling and reprocessing of the epoxy-amine-dioxazaborocane thermoset is demonstrated, with retention of Young's modulus and ultimate tensile strength. Most notably, an efficient and low-cost process for the chemical recycling, disassembly and dissolution of the thermoset is demonstrated via two complementary processes using either pinacol (diol) or mono-functional phenylboronic ester.

6.
Sci Rep ; 12(1): 18735, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36333406

ABSTRACT

Carbon capture and storage is required to meet Paris Agreement targets. Photosynthesis is nature's carbon capture technology. Drawing inspiration from lichen, we engineered 3D photosynthetic cyanobacterial biocomposites (i.e., lichen mimics) using acrylic latex polymers applied to loofah sponge. Biocomposites had CO2 uptake rates of 1.57 ± 0.08 g CO2 g-1biomass d-1. Uptake rates were based on the dry biomass at the start of the trial and incorporate the CO2 used to grow new biomass as well as that contained in storage compounds such as carbohydrates. These uptake rates represent 14-20-fold improvements over suspension controls, potentially scaling to capture 570 tCO2 t-1biomass yr-1, with an equivalent land consumption of 5.5-8.17 × 106 ha, delivering annualized CO2 removal of 8-12 GtCO2, compared with 0.4-1.2 × 109 ha for forestry-based bioenergy with carbon capture and storage. The biocomposites remained functional for 12 weeks without additional nutrient or water supplementation, whereupon experiments were terminated. Engineered and optimized cyanobacteria biocomposites have potential for sustainable scalable deployment as part of humanity's multifaceted technological stand against climate change, offering enhanced CO2 removal with low water, nutrient, and land use penalties.


Subject(s)
Carbon , Cyanobacteria , Carbon Dioxide , Photosynthesis , Carbon Sequestration , Biomass , Water
7.
Langmuir ; 38(34): 10632-10641, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35977085

ABSTRACT

A versatile method for the creation of multitier hierarchical structured surfaces is reported, which optimizes both antiviral and hydrophobic (easy-clean) properties. The methodology exploits the availability of surface-active chemical groups while also manipulating both the surface micro- and nanostructure to control the way the surface coating interacts with virus particles within a liquid droplet. This methodology has significant advantages over single-tier structured surfaces, including the ability to overcome the droplet-pinning effect and in delivering surfaces with high static contact angles (>130°) and good antiviral efficacy (log kill >2). In addition, the methodology highlights a valuable approach for the creation of mechanically robust, nanostructured surfaces which can be prepared by spray application using nonspecialized equipment.


Subject(s)
Antiviral Agents , Nanostructures , Antiviral Agents/pharmacology , Hydrophobic and Hydrophilic Interactions , Nanostructures/chemistry , Surface Properties
8.
J Org Chem ; 76(5): 1479-82, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21265538

ABSTRACT

Meyer-Schuster rearrangements of propargylic alcohols take place readily at room temperature in toluene with 1-2 mol % PPh(3)AuNTf(2), in the presence of 0.2 equiv of 4-methoxyphenylboronic acid or 1 equiv of methanol. Good to excellent yields of enones can be obtained from secondary and tertiary alcohols, with high selectivity for the E-alkene in most cases. A one-pot procedure for the conversion of primary propargylic alcohols into ß-arylketones was also developed, via Meyer-Schuster rearrangement followed by Pd-catalayzed addition of a boronic acid.


Subject(s)
Alkynes/chemistry , Gold/chemistry , Ketones/chemical synthesis , Propanols/chemistry , Temperature , Catalysis , Ketones/chemistry , Molecular Structure , Stereoisomerism
10.
Org Lett ; 10(7): 1501-4, 2008 Apr 03.
Article in English | MEDLINE | ID: mdl-18336037

ABSTRACT

Diphenyl vinyl sulfonium salt and chiral amido-ketones undergo highly diastereoselective epoxy-annulation reactions in good yield. The use of a chiral vinyl sulfonium salt dominates the stereochemical outcome of the annulation reaction (reagent control is greater than substrate control), and this has allowed the kinetic resolution of racemic amido-ketones to be achieved.


Subject(s)
Epoxy Compounds/chemistry , Ketones/chemistry , Pyrrolidines/chemical synthesis , Sulfonium Compounds/chemistry , Vinyl Compounds/chemistry , Catalysis , Pyrrolidines/chemistry , Salts , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...