Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 273(36): 23150-9, 1998 Sep 04.
Article in English | MEDLINE | ID: mdl-9722544

ABSTRACT

Despite a large amount of work over the past 30 years, there is still no universal agreement on the differential reactivities of the individual alpha and beta subunits in human hemoglobin. To address this question systematically, we prepared a series of hybrid hemoglobins in which heme was replaced by chromium(III), manganese(III), nickel(II), and magnesium(II) protoporphyrin IXs in either the alpha or beta subunits to produce alpha2(M)beta2(Fe)1 and alpha2(Fe)beta2(M) tetramers. None of the abnormal metal complexes react with dioxygen or carbon monoxide. The O2 affinities of the resultant hemoglobins vary from 3 microM-1 (Cr(III)/Fe(II) hybrids) to 0.003 microM-1 (Mg(II)/Fe(II) hybrids), covering the full range expected for the various high (R) and low (T) affinity quaternary conformations, respectively, of human hemoglobin A0. The alpha and beta subunits in hemoglobin have similar O2 affinities in both quaternary states, despite the fact that the R to T transition causes significantly different structural changes in the alpha and beta heme pockets. This functional equivalence almost certainly evolved to maintain high n values for efficient O2 transport.


Subject(s)
Carbon Monoxide/metabolism , Hemoglobins/metabolism , Oxygen/metabolism , Allosteric Regulation , Chromium/chemistry , Chromium/metabolism , Hemoglobins/chemistry , Humans , Ligands , Magnesium/chemistry , Magnesium/metabolism , Manganese/chemistry , Manganese/metabolism , Nickel/chemistry , Nickel/metabolism , Protein Conformation , Protoporphyrins/chemistry , Protoporphyrins/metabolism
2.
J Biol Chem ; 271(21): 12451-6, 1996 May 24.
Article in English | MEDLINE | ID: mdl-8647851

ABSTRACT

Cr(III)-Fe(II) hybrid hemoglobins, alpha 2(Cr) beta 2(Fe) and alpha 2(Fe) beta 2(Cr), in which hemes in either the alpha- or beta-subunits were substituted with chromium(III) protoporphyrin IX (Cr(III)(PPIX), were prepared and characterized by oxygen equilibrium measurements. Because Cr(III)PPIX binds neither oxygen molecules nor carbon monoxide, the oxygen equilibrium properties of Fe(II) subunits within these hybrids can be analyzed by a two-step oxygen equilibrium scheme. The oxygen equilibrium constants for both hybrids at the second oxygenation step agree with those for human adult hemoglobin at the last oxygenation step (at pH 6.5-8.4 with an without inositol hexaphosphate at 25 degrees C). The similarity between the effects of the Cr(III)PPIX and each subunits' oxygeme on the oxygen equilibrium properties of the counterpart Fe(II) subunits within hemoglobin indicate the utility of Cr(III)PPIX as a model for a permanently oxygenated heme within the hemoglobin molecule. We found that Cr(III)-Fe(II) hybrid hemoglobins have several advantages over cyanomet valency hybrid hemoglobins, which have been frequently used as a model system for partially oxygenated hemoglobins. In contrast to cyanomet heme, Cr(III)PPIX within hemoglobin is not subject to reduction with dithionite or enzymatic reduction systems. Therefore, we could obtain more accurate and reasonable oxygen equilibrium curves of Cr(III)-Fe(II) hybrids in the presence of an enzymatic reduction system, and we could obtain single crystals of deoxy-alpha 2(Cr) beta 2(Fe) when grown in low salt solution in the presence of polyethylene glycol 1000 and 50 mM dithionite.


Subject(s)
Chromium/chemistry , Hemoglobins/chemistry , Iron/chemistry , Oxygen/chemistry , Adult , Crystallization , Humans , Isoelectric Focusing , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...