Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Anal Bioanal Chem ; 406(2): 455-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24247550

ABSTRACT

Polyamidoamine dendrimers have been studied extensively for their potential applications in nanomedicine. Their uses as imaging, drug, and nucleic acid delivery agents are nearing clinical trials. As such, characterization of polyamidoamine dendrimers and their nano-devices is of immense importance for monitoring the efficiency of their synthesis, purity, and quality control of manufactured products as well as their in vivo behavior. We report here the analysis of polyamidoamine dendrimers possessing various cores and surface groups with a simple and inexpensive isoelectric focusing method. The isoelectric points of the dendrimers were readily determined from a calibration plot generated by running proteins with known pI values. The isoelectric points for various surface-modified polyamidoamine dendrimers ranged from 4 to 9. Polyamidoamine dendrimers possessing terminal hydroxyl groups gave a pI > 7, while those with terminal carboxyl groups exhibit a pI < 7. Generation number and cores of the dendrimers did not significantly affect their isoelectric points. Isoelectric focusing thus offers another important tool for characterizing these nanomolecules.


Subject(s)
Dendrimers/isolation & purification , Polyamines/isolation & purification , Calibration , Dendrimers/chemistry , Drug Carriers , Isoelectric Focusing , Isoelectric Point , Polyamines/chemistry , Proteins/chemistry , Proteins/isolation & purification , Reference Standards
2.
Free Radic Biol Med ; 50(8): 918-25, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-20977937

ABSTRACT

It is well known that antioxidants have protective effects against oxidative stress. Unfortunately, in the presence of transition metals, antioxidants, including polyphenols with potent antioxidant activities, may also exhibit pro-oxidant effects, which may irreversibly damage DNA. Therefore, antioxidants with strong free radical-scavenging abilities and devoid of pro-oxidant effects would be of immense biological importance. We report two antioxidant dendrimers with a surface rich in multiple phenolic hydroxyl groups, benzylic hydrogens, and electron-donating ring substituents that contribute to their potent free radical-quenching properties. To minimize their pro-oxidant effects, the dendrimers were designed with a metal-chelating tris(2-aminoethyl)amine (TREN) core. The dendritic antioxidants were prepared by attachment of six syringaldehyde or vanillin molecules to TREN by reductive amination. They exhibited potent radical-scavenging properties: 5 times stronger than quercetin and 15 times more potent than Trolox according to the 1,1-diphenyl-2-picrylhydrazyl assay. The antioxidant dendrimers also protected low-density lipoprotein, lysozyme, and DNA against 2,2'-azobis(2-amidinopropane) dihydrochloride-induced free radical damage. More importantly, unlike quercetin and Trolox, the two TREN antioxidant dendrimers did not damage DNA via their pro-oxidant effects when incubated with physiological amounts of copper ions. The dendrimers also showed no cytotoxicity toward Chinese hamster ovary cells.


Subject(s)
Antioxidants/pharmacology , Dendrimers , Reactive Oxygen Species/pharmacology , Animals , CHO Cells , Cricetinae , Cricetulus , DNA/drug effects , Electrophoresis, Agar Gel , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL