Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(24)2023 12 08.
Article in English | MEDLINE | ID: mdl-38132113

ABSTRACT

Atopic dermatitis (AD) is the most common chronic inflammatory skin disease and presents a major public health problem worldwide. It is characterized by a recurrent and/or chronic course of inflammatory skin lesions with intense pruritus. Its pathophysiologic features include barrier dysfunction, aberrant immune cell infiltration, and alterations in the microbiome that are associated with genetic and environmental factors. There is a complex crosstalk between these components, which is primarily mediated by cytokines. Epidermal barrier dysfunction is the hallmark of AD and is caused by the disruption of proteins and lipids responsible for establishing the skin barrier. To better define the role of cytokines in stratum corneum lipid abnormalities related to AD, we conducted a systematic review of biomedical literature in PubMed from its inception to 5 September 2023. Consistent with the dominant TH2 skewness seen in AD, type 2 cytokines were featured prominently as possessing a central role in epidermal lipid alterations in AD skin. The cytokines associated with TH1 and TH17 were also identified to affect barrier lipids. Considering the broad cytokine dysregulation observed in AD pathophysiology, understanding the role of each of these in lipid abnormalities and barrier dysfunction will help in developing therapeutics to best achieve barrier homeostasis in AD patients.


Subject(s)
Dermatitis, Atopic , Humans , Dermatitis, Atopic/pathology , Cytokines/metabolism , Epidermis/metabolism , Skin/pathology , Lipids
2.
Antioxidants (Basel) ; 11(6)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35740103

ABSTRACT

Constitutive pigmentation determines the response to sun exposure and the risk for melanoma, an oxidative stress-driven tumor. Using primary cultures of human melanocytes, we compared the effects of constitutive pigmentation on their antioxidant response to solar UV. The quantitation of eumelanin and pheomelanin showed that the eumelanin content and eumelanin to pheomelanin ratio correlated inversely with the basal levels of reactive oxygen species (ROS). Irradiation with 7 J/cm2 solar UV increased ROS generation without compromising melanocyte viability. Among the antioxidant enzymes tested, the basal levels of heme oxygenase-1 (HO-1) and the glutamate cysteine ligase catalytic subunit and modifier subunit (GCLC and GCLM) correlated directly with the eumelanin and total melanin contents. The levels of HO-1 and GCLM decreased at 6 h but increased at 24 h post-solar UV. Consistent with the GCLC and GCLM levels, the basal glutathione (GSH) content was significantly lower in light than in dark melanocytes. The expression of HMOX1, GCLC, GCLM, and CAT did not correlate with the melanin content and was reduced 3 h after solar UV irradiation, particularly in lightly pigmented melanocytes. Solar UV increased p53 and lipid peroxidation, which correlated inversely with the eumelanin and total melanin contents. These intrinsic differences between light and dark melanocytes should determine their antioxidant response and melanoma risk.

3.
Pigment Cell Melanoma Res ; 34(4): 762-776, 2021 07.
Article in English | MEDLINE | ID: mdl-33973367

ABSTRACT

Human epidermal melanocytes play a central role in sensing the environment and protecting the skin from the drastic effects of solar ultraviolet radiation and other environmental toxins or inflammatory agents. Melanocytes survive in the epidermis for decades, which subjects them to chronic environmental insults. Melanocytes have a poor self-renewal capacity; therefore, it is critical to ensure their survival with genomic stability. The function and survival of melanocytes is regulated by an elaborate network of paracrine factors synthesized mainly by epidermal keratinocytes and dermal fibroblasts. A symbiotic relationship exists between epidermal melanocytes and keratinocytes on the one hand, and between melanocytes and dermal fibroblasts on the other hand. Melanocytes protect epidermal keratinocytes and dermal fibroblasts from the damaging effects of solar radiation, and the latter cells synthesize biochemical mediators that maintain the homeostasis, and regulate the stress response of melanocytes. Disruption of the paracrine network results in pigmentary disorders, due to abnormal regulation of melanin synthesis, and compromise of melanocyte survival or genomic stability. This review provides an update of the current knowledge of keratinocyte- and fibroblast-derived paracrine factors and their contribution to melanocyte physiology, and how their abnormal production is involved in the pathogenesis of common pigmentary disorders.


Subject(s)
Fibroblasts/metabolism , Homeostasis , Keratinocytes/metabolism , Melanocytes/metabolism , Pigmentation Disorders/pathology , Ultraviolet Rays , Animals , Fibroblasts/radiation effects , Homeostasis/radiation effects , Humans , Keratinocytes/radiation effects , Melanocytes/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...