Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Cells ; 13(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38334611

ABSTRACT

Isocitrate Dehydrogenase-1 (IDH1) is commonly mutated in lower-grade diffuse gliomas. The IDH1R132H mutation is an important diagnostic tool for tumor diagnosis and prognosis; however, its role in glioma development, and its impact on response to therapy, is not fully understood. We developed a murine model of proneural IDH1R132H-mutated glioma that shows elevated production of 2-hydroxyglutarate (2-HG) and increased trimethylation of lysine residue K27 on histone H3 (H3K27me3) compared to IDH1 wild-type tumors. We found that using Tazemetostat to inhibit the methyltransferase for H3K27, Enhancer of Zeste 2 (EZH2), reduced H3K27me3 levels and increased acetylation on H3K27. We also found that, although the histone deacetylase inhibitor (HDACi) Panobinostat was less cytotoxic in IDH1R132H-mutated cells (either isolated from murine glioma or oligodendrocyte progenitor cells infected in vitro with a retrovirus expressing IDH1R132H) compared to IDH1-wild-type cells, combination treatment with Tazemetostat is synergistic in both mutant and wild-type models. These findings indicate a novel therapeutic strategy for IDH1-mutated gliomas that targets the specific epigenetic alteration in these tumors.


Subject(s)
Biphenyl Compounds , Glioma , Histone Deacetylase Inhibitors , Morpholines , Pyridones , Animals , Mice , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histones/genetics , Glioma/drug therapy , Glioma/genetics , Glioma/pathology , Benzamides
2.
Adv Exp Med Biol ; 1405: 153-173, 2023.
Article in English | MEDLINE | ID: mdl-37452938

ABSTRACT

Pineal region tumors fall into five broad categories: benign pineal region tumors, glial tumors, papillary tumors, pineal parenchymal tumors, and germ cell tumors. Genetic and transcriptional studies have identified key chromosomal alterations in germinomas (RUNDC3A, ASAH1, LPL) and in pineocytomas/pineoblastomas (DROSHA/DICER1, RB1). Pineal region tumors generally present with symptoms of hydrocephalus including nausea, vomiting, papilledema, and the classical Parinaud's triad of upgaze paralysis, convergence-retraction nystagmus, and light-near pupillary dissociation. Workup requires neuroimaging and tissue diagnosis via biopsy. In germinoma cases, diagnosis may be made based on serum or CSF studies for alpha-fetoprotein or beta-HCG making the preferred treatment radiosurgery, thereby preventing the need for unnecessary surgeries. Treatment generally involves three steps: CSF diversion in cases of hydrocephalus, biopsy through endoscopic or stereotactic methods, and open surgical resection. Multiple surgical approaches are possible for approach to the pineal region. The original approach to the pineal region was the interhemispheric transcallosal first described by Dandy. The most common approach is the supracerebellar infratentorial approach as it utilizes a natural anatomic corridor for access to the pineal region. The paramedian or lateral supracerebellar infratentorial approach is another improvement that uses a similar anatomic corridor but allows for preservation of midline bridging veins; this minimizes the chance for brainstem or cerebellar venous infarction. Determination of the optimal approach relies on tumor characteristics, namely location of deep venous structures to the tumor along with the lateral eccentricity of the tumor. The immediate post-operative period is important as hemorrhage or swelling can cause obstructive hydrocephalus and lead to rapid deterioration. Adjuvant therapy, whether chemotherapy or radiation, is based on tumor pathology. Improvements within pineal surgery will require improved technology for access to the pineal region along with targeted therapies that can effectively treat and prevent recurrence of malignant pineal region tumors.


Subject(s)
Brain Neoplasms , Glioma , Hydrocephalus , Pineal Gland , Pinealoma , Humans , Pinealoma/diagnosis , Pinealoma/genetics , Pinealoma/surgery , Pineal Gland/pathology , Pineal Gland/surgery , Brain Neoplasms/genetics , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Glioma/pathology , Hydrocephalus/pathology , Ribonuclease III , DEAD-box RNA Helicases
3.
JAMA Oncol ; 9(7): 919-927, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37200021

ABSTRACT

Importance: O6-methylguanine-DNA methyltransferase (MGMT [OMIM 156569]) promoter methylation (mMGMT) is predictive of response to alkylating chemotherapy for glioblastomas and is routinely used to guide treatment decisions. However, the utility of MGMT promoter status for low-grade and anaplastic gliomas remains unclear due to molecular heterogeneity and the lack of sufficiently large data sets. Objective: To evaluate the association of mMGMT for low-grade and anaplastic gliomas with chemotherapy response. Design, Setting, and Participants: This cohort study aggregated grade II and III primary glioma data from 3 prospective cohort studies with patient data collected from August 13, 1995, to August 3, 2022, comprising 411 patients: MSK-IMPACT, EORTC (European Organization of Research and Treatment of Cancer) 26951, and Columbia University. Statistical analysis was performed from April 2022 to January 2023. Exposure: MGMT promoter methylation status. Main Outcomes and Measures: Multivariable Cox proportional hazards regression modeling was used to assess the association of mMGMT status with progression-free survival (PFS) and overall survival (OS) after adjusting for age, sex, molecular class, grade, chemotherapy, and radiotherapy. Subgroups were stratified by treatment status and World Health Organization 2016 molecular classification. Results: A total of 411 patients (mean [SD] age, 44.1 [14.5] years; 283 men [58%]) met the inclusion criteria, 288 of whom received alkylating chemotherapy. MGMT promoter methylation was observed in 42% of isocitrate dehydrogenase (IDH)-wild-type gliomas (56 of 135), 53% of IDH-mutant and non-codeleted gliomas (79 of 149), and 74% of IDH-mutant and 1p/19q-codeleted gliomas (94 of 127). Among patients who received chemotherapy, mMGMT was associated with improved PFS (median, 68 months [95% CI, 54-132 months] vs 30 months [95% CI, 15-54 months]; log-rank P < .001; adjusted hazard ratio [aHR] for unmethylated MGMT, 1.95 [95% CI, 1.39-2.75]; P < .001) and OS (median, 137 months [95% CI, 104 months to not reached] vs 61 months [95% CI, 47-97 months]; log-rank P < .001; aHR, 1.65 [95% CI, 1.11-2.46]; P = .01). After adjusting for clinical factors, MGMT promoter status was associated with chemotherapy response in IDH-wild-type gliomas (aHR for PFS, 2.15 [95% CI, 1.26-3.66]; P = .005; aHR for OS, 1.69 [95% CI, 0.98-2.91]; P = .06) and IDH-mutant and codeleted gliomas (aHR for PFS, 2.99 [95% CI, 1.44-6.21]; P = .003; aHR for OS, 4.21 [95% CI, 1.25-14.2]; P = .02), but not IDH-mutant and non-codeleted gliomas (aHR for PFS, 1.19 [95% CI, 0.67-2.12]; P = .56; aHR for OS, 1.07 [95% CI, 0.54-2.12]; P = .85). Among patients who did not receive chemotherapy, mMGMT status was not associated with PFS or OS. Conclusions and Relevance: This study suggests that mMGMT is associated with response to alkylating chemotherapy for low-grade and anaplastic gliomas and may be considered as a stratification factor in future clinical trials of patients with IDH-wild-type and IDH-mutant and codeleted tumors.


Subject(s)
Brain Neoplasms , Glioma , Male , Humans , Adult , Prognosis , Cohort Studies , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Methylation , Prospective Studies , Glioma/drug therapy , Glioma/genetics , Glioma/pathology , Antineoplastic Agents, Alkylating/therapeutic use , DNA Modification Methylases/genetics , Tumor Suppressor Proteins/genetics , DNA Repair Enzymes/genetics
4.
Neurooncol Adv ; 5(1): vdad044, 2023.
Article in English | MEDLINE | ID: mdl-37215957

ABSTRACT

The prognosis for glioblastoma has remained poor despite multimodal standard of care treatment, including temozolomide, radiation, and surgical resection. Further, the addition of immunotherapies, while promising in a number of other solid tumors, has overwhelmingly failed in the treatment of gliomas, in part due to the immunosuppressive microenvironment and poor drug penetrance to the brain. Local delivery of immunomodulatory therapies circumvents some of these challenges and has led to long-term remission in select patients. Many of these approaches utilize convection-enhanced delivery (CED) for immunological drug delivery, allowing high doses to be delivered directly to the brain parenchyma, avoiding systemic toxicity. Here, we review the literature encompassing immunotherapies delivered via CED-from preclinical model systems to clinical trials-and explore how their unique combination elicits an antitumor response by the immune system, decreases toxicity, and improves survival among select high-grade glioma patients.

5.
Nat Commun ; 14(1): 1187, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36864031

ABSTRACT

Ferroptosis is mediated by lipid peroxidation of phospholipids containing polyunsaturated fatty acyl moieties. Glutathione, the key cellular antioxidant capable of inhibiting lipid peroxidation via the activity of the enzyme glutathione peroxidase 4 (GPX-4), is generated directly from the sulfur-containing amino acid cysteine, and indirectly from methionine via the transsulfuration pathway. Herein we show that cysteine and methionine deprivation (CMD) can synergize with the GPX4 inhibitor RSL3 to increase ferroptotic cell death and lipid peroxidation in both murine and human glioma cell lines and in ex vivo organotypic slice cultures. We also show that a cysteine-depleted, methionine-restricted diet can improve therapeutic response to RSL3 and prolong survival in a syngeneic orthotopic murine glioma model. Finally, this CMD diet leads to profound in vivo metabolomic, proteomic and lipidomic alterations, highlighting the potential for improving the efficacy of ferroptotic therapies in glioma treatment with a non-invasive dietary modification.


Subject(s)
Ferroptosis , Glioma , Humans , Animals , Mice , Methionine , Cysteine , Proteomics , Racemethionine , Glioma/drug therapy
6.
bioRxiv ; 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36865302

ABSTRACT

Glioma cells hijack developmental transcriptional programs to control cell state. During neural development, lineage trajectories rely on specialized metabolic pathways. However, the link between tumor cell state and metabolic programs is poorly understood in glioma. Here we uncover a glioma cell state-specific metabolic liability that can be leveraged therapeutically. To model cell state diversity, we generated genetically engineered murine gliomas, induced by deletion of p53 alone (p53) or with constitutively active Notch signaling (N1IC), a pathway critical in controlling cellular fate. N1IC tumors harbored quiescent astrocyte-like transformed cell states while p53 tumors were predominantly comprised of proliferating progenitor-like cell states. N1IC cells exhibit distinct metabolic alterations, with mitochondrial uncoupling and increased ROS production rendering them more sensitive to inhibition of the lipid hydroperoxidase GPX4 and induction of ferroptosis. Importantly, treating patient-derived organotypic slices with a GPX4 inhibitor induced selective depletion of quiescent astrocyte-like glioma cell populations with similar metabolic profiles.

7.
Lancet Oncol ; 23(11): 1409-1418, 2022 11.
Article in English | MEDLINE | ID: mdl-36243020

ABSTRACT

BACKGROUND: Topotecan is cytotoxic to glioma cells but is clinically ineffective because of drug delivery limitations. Systemic delivery is limited by toxicity and insufficient brain penetrance, and, to date, convection-enhanced delivery (CED) has been restricted to a single treatment of restricted duration. To address this problem, we engineered a subcutaneously implanted catheter-pump system capable of repeated, chronic (prolonged, pulsatile) CED of topotecan into the brain and tested its safety and biological effects in patients with recurrent glioblastoma. METHODS: We did a single-centre, open-label, single-arm, phase 1b clinical trial at Columbia University Irving Medical Center (New York, NY, USA). Eligible patients were at least 18 years of age with solitary, histologically confirmed recurrent glioblastoma showing radiographic progression after surgery, radiotherapy, and chemotherapy, and a Karnofsky Performance Status of at least 70. Five patients had catheters stereotactically implanted into the glioma-infiltrated peritumoural brain and connected to subcutaneously implanted pumps that infused 146 µM topotecan 200 µL/h for 48 h, followed by a 5-7-day washout period before the next infusion, with four total infusions. After the fourth infusion, the pump was removed and the tumour was resected. The primary endpoint of the study was safety of the treatment regimen as defined by presence of serious adverse events. Analyses were done in all treated patients. The trial is closed, and is registered with ClinicalTrials.gov, NCT03154996. FINDINGS: Between Jan 22, 2018, and July 8, 2019, chronic CED of topotecan was successfully completed safely in all five patients, and was well tolerated without substantial complications. The only grade 3 adverse event related to treatment was intraoperative supplemental motor area syndrome (one [20%] of five patients in the treatment group), and there were no grade 4 adverse events. Other serious adverse events were related to surgical resection and not the study treatment. Median follow-up was 12 months (IQR 10-17) from pump explant. Post-treatment tissue analysis showed that topotecan significantly reduced proliferating tumour cells in all five patients. INTERPRETATION: In this small patient cohort, we showed that chronic CED of topotecan is a potentially safe and active therapy for recurrent glioblastoma. Our analysis provided a unique tissue-based assessment of treatment response without the need for large patient numbers. This novel delivery of topotecan overcomes limitations in delivery and treatment response assessment for patients with glioblastoma and could be applicable for other anti-glioma drugs or other CNS diseases. Further studies are warranted to determine the effect of this drug delivery approach on clinical outcomes. FUNDING: US National Institutes of Health, The William Rhodes and Louise Tilzer Rhodes Center for Glioblastoma, the Michael Weiner Glioblastoma Research Into Treatment Fund, the Gary and Yael Fegel Foundation, and The Khatib Foundation.


Subject(s)
Glioblastoma , Glioma , Humans , Topotecan/adverse effects , Glioblastoma/drug therapy , Convection , Neoplasm Recurrence, Local/drug therapy , Glioma/pathology
9.
Cancer Invest ; 40(6): 554-566, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34151678

ABSTRACT

Understanding dexamethasone's effect on the immune microenvironment in glioma patients is of key importance. We performed a comprehensive literature review using the NCBI PubMed database for all articles meeting the following search criteria. ((dexamethasone[All Fields]) AND (glioma or glioblastoma)[Title/Abstract]) AND (immune or T cell or B cell or monocyte or neutrophil or macrophage). Forty-three manuscripts were deemed relevant to the topic at hand. Multiple clinical studies have linked dexamethasone use to decreased overall survival while preclinical studies in murine glioma models have demonstrated decreased tumor-infiltrating lymphocytes after dexamethasone administration.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Animals , Brain Neoplasms/drug therapy , Dexamethasone/therapeutic use , Glioma/drug therapy , Humans , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Mice , Precision Medicine , Tumor Microenvironment
10.
J Neurosurg Sci ; 65(4): 442-449, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34114428

ABSTRACT

INTRODUCTION: As the incidence of elderly spinal cord injury rises, improved understanding of risk profiles and outcomes is needed. This review summarizes clinical characteristics, management, and outcomes specific to the elderly (≥65-years) with acute traumatic central cord syndrome in the USA. EVIDENCE AQUISITION: Literature review of the PubMed, Embase, and CINAHL databases (01/2007-03/2020) regarding elderly subjects with acute traumatic central cord syndrome. EVIDENCE SYNTHESIS: Nine studies met inclusion criteria. Acute traumatic central cord syndrome was more common among married (50%), Caucasian (22-71%) males (63-86%) with an annual income <40,999 USA dollars (30%). Mechanisms consisted predominantly of traumatic falls (32-55%) and motor vehicle collisions (15-34%), with admission American Spinal Injury Association Impairment Scale grades D (25-79%) and C (21-51%). Mortality was 2-3%. American Spinal Injury Association Impairment Scale motor score, maximum canal compromise, and extent of parenchymal damage were predictors of one-year recovery. Greater comorbidities (heart failure, weight loss, coagulopathy, diabetes), lower income (<51,000 USA dollars), and age ≥80 were predictors of mortality. A substantial cohort underwent surgery (40-45%). Elderly patients were less likely to receive surgical intervention, and surgery timing had variable effects on recovery. CONCLUSIONS: Elderly patients with acute traumatic central cord syndrome are uniquely at risk due to cumulative comorbidities, protracted recovery times, and unclear effects of surgical timing on outcomes. Prospective research should focus on validating age-specific risk factors, formalizing surgical indications, and delineating the impact of time to surgery on acute and long-term outcomes for this condition.


Subject(s)
Central Cord Syndrome , Spinal Cord Injuries , Aged , Central Cord Syndrome/epidemiology , Central Cord Syndrome/surgery , Cohort Studies , Decompression, Surgical , Humans , Male , Prospective Studies , Recovery of Function , Spinal Cord Injuries/epidemiology , Spinal Cord Injuries/surgery , United States/epidemiology
11.
Article in English | MEDLINE | ID: mdl-34046212

ABSTRACT

INTRODUCTION: Return to work (RTW) is an important milestone of mild traumatic brain injury (mTBI) recovery. The objective of this study was to evaluate whether baseline clinical variables, three-month RTW, and three-month postconcussional symptoms (PCS) were associated with six-month RTW after mTBI. METHODS: Adult subjects from the prospective multicenter Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot study with mTBI (Glasgow Coma Scale 13-15) who were employed at baseline, with completed three-and six-month RTW status, and three-month Acute Concussion Evaluation (ACE), were extracted. Univariate and multivariable analyses were performed for six-month RTW, with focus on baseline employment, three-month RTW, and three-month ACE domains (physical, cognitive, sleep, and/or emotional postconcussional symptoms (PCS)). Odds ratios (OR) and 95% confidence intervals [CI] were reported. Significance was assessed at p < 0.05. RESULTS: In 152 patients aged 40.7 ± 15.0years, 72% were employed full-time at baseline. Three- and six-month RTW were 77.6% and 78.9%, respectively. At three months, 59.2%, 47.4%, 46.1% and 31.6% scored positive for ACE physical, cognitive, sleep, and emotional PCS domains, respectively. Three-month RTW predicted six-month RTW (OR = 19.80, 95% CI [7.61-51.52]). On univariate analysis, scoring positive in any three-month ACE domain predicted inability for six-month RTW (OR = 0.10-0.11). On multivariable analysis, emotional symptoms predicted inability to six-month RTW (OR = 0.19 [0.04-0.85]). Subjects who scored positive in all four ACE domains were more likely to be unable to RTW at six months (4 domains: 58.3%, vs. 0-to-3 domains: 9.5%; multivariable OR = 0.09 [0.02-0.33]). CONCLUSIONS: Three-month post-injury is an important time point at which RTW status and PCS should be assessed, as both are prognostic markers for six-month RTW. Clinicians should be particularly vigilant of patients who present with emotional symptoms, and patients with symptoms across multiple PCS categories, as these patients are at further risk of inability to RTW and may benefit from targeted evaluation and support.

12.
Genome Med ; 13(1): 88, 2021 05 19.
Article in English | MEDLINE | ID: mdl-34011400

ABSTRACT

BACKGROUND: Macrophages are the most common infiltrating immune cells in gliomas and play a wide variety of pro-tumor and anti-tumor roles. However, the different subpopulations of macrophages and their effects on the tumor microenvironment remain poorly understood. METHODS: We combined new and previously published single-cell RNA-seq data from 98,015 single cells from a total of 66 gliomas to profile 19,331 individual macrophages. RESULTS: Unsupervised clustering revealed a pro-tumor subpopulation of bone marrow-derived macrophages characterized by the scavenger receptor MARCO, which is almost exclusively found in IDH1-wild-type glioblastomas. Previous studies have implicated MARCO as an unfavorable marker in melanoma and non-small cell lung cancer; here, we find that bulk MARCO expression is associated with worse prognosis and mesenchymal subtype. Furthermore, MARCO expression is significantly altered over the course of treatment with anti-PD1 checkpoint inhibitors in a response-dependent manner, which we validate with immunofluorescence imaging. CONCLUSIONS: These findings illustrate a novel macrophage subpopulation that drives tumor progression in glioblastomas and suggest potential therapeutic targets to prevent their recruitment.


Subject(s)
Biomarkers, Tumor , Glioblastoma/diagnosis , Glioblastoma/etiology , Receptors, Immunologic/genetics , Single-Cell Analysis , Tumor-Associated Macrophages/metabolism , Cell Communication/genetics , Fluorescent Antibody Technique , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Glioblastoma/mortality , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , Isocitrate Dehydrogenase/genetics , Mutation , Prognosis , Single-Cell Analysis/methods , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/pathology
13.
Genome Med ; 13(1): 82, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33975634

ABSTRACT

BACKGROUND: Preclinical studies require models that recapitulate the cellular diversity of human tumors and provide insight into the drug sensitivities of specific cellular populations. The ideal platform would enable rapid screening of cell type-specific drug sensitivities directly in patient tumor tissue and reveal strategies to overcome intratumoral heterogeneity. METHODS: We combine multiplexed drug perturbation in acute slice culture from freshly resected tumors with single-cell RNA sequencing (scRNA-seq) to profile transcriptome-wide drug responses in individual patients. We applied this approach to drug perturbations on slices derived from six glioblastoma (GBM) resections to identify conserved drug responses and to one additional GBM resection to identify patient-specific responses. RESULTS: We used scRNA-seq to demonstrate that acute slice cultures recapitulate the cellular and molecular features of the originating tumor tissue and the feasibility of drug screening from an individual tumor. Detailed investigation of etoposide, a topoisomerase poison, and the histone deacetylase (HDAC) inhibitor panobinostat in acute slice cultures revealed cell type-specific responses across multiple patients. Etoposide has a conserved impact on proliferating tumor cells, while panobinostat treatment affects both tumor and non-tumor populations, including unexpected effects on the immune microenvironment. CONCLUSIONS: Acute slice cultures recapitulate the major cellular and molecular features of GBM at the single-cell level. In combination with scRNA-seq, this approach enables cell type-specific analysis of sensitivity to multiple drugs in individual tumors. We anticipate that this approach will facilitate pre-clinical studies that identify effective therapies for solid tumors.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Neoplasms/genetics , RNA-Seq , Single-Cell Analysis , Antineoplastic Agents/therapeutic use , Computational Biology/methods , Drug Screening Assays, Antitumor/methods , Humans , Immunohistochemistry , In Situ Hybridization , Microscopy , Neoplasms/drug therapy , Precision Medicine/methods , Sensitivity and Specificity , Single-Cell Analysis/methods , Treatment Outcome , Tumor Microenvironment/genetics , Whole Genome Sequencing
15.
Sci Rep ; 11(1): 6521, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33753753

ABSTRACT

Drug delivery in diffuse intrinsic pontine glioma is significantly limited by the blood-brain barrier (BBB). Focused ultrasound (FUS), when combined with the administration of microbubbles can effectively open the BBB permitting the entry of drugs across the cerebrovasculature into the brainstem. Given that the utility of FUS in brainstem malignancies remains unknown, the purpose of our study was to determine the safety and feasibility of this technique in a murine pontine glioma model. A syngeneic orthotopic model was developed by stereotactic injection of PDGF-B+PTEN-/-p53-/- murine glioma cells into the pons of B6 mice. A single-element, spherical-segment 1.5 MHz ultrasound transducer driven by a function generator through a power amplifier was used with concurrent intravenous microbubble injection for tumor sonication. Mice were randomly assigned to control, FUS and double-FUS groups. Pulse and respiratory rates were continuously monitored during treatment. BBB opening was confirmed with gadolinium-enhanced MRI and Evans blue. Kondziela inverted screen testing and sequential weight lifting measured motor function before and after sonication. A subset of animals were treated with etoposide following ultrasound. Mice were either sacrificed for tissue analysis or serially monitored for survival with daily weights. FUS successfully caused BBB opening while preserving normal cardiorespiratory and motor function. Furthermore, the degree of intra-tumoral hemorrhage and inflammation on H&E in control and treated mice was similar. There was also no difference in weight loss and survival between the groups (p > 0.05). Lastly, FUS increased intra-tumoral etoposide concentration by more than fivefold. FUS is a safe and feasible technique for repeated BBB opening and etoposide delivery in a preclinical pontine glioma model.


Subject(s)
Blood-Brain Barrier/drug effects , Brain Stem Neoplasms/drug therapy , Drug Delivery Systems , Glioma/drug therapy , Animals , Biological Transport/drug effects , Brain Stem/diagnostic imaging , Brain Stem/drug effects , Brain Stem Neoplasms/diagnostic imaging , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/pathology , Disease Models, Animal , Etoposide/pharmacology , Evans Blue/pharmacology , Gadolinium/pharmacology , Glioma/diagnostic imaging , Glioma/genetics , Glioma/pathology , Humans , Magnetic Resonance Imaging , Mice , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/pharmacology , Pons/diagnostic imaging , Pons/drug effects , Proto-Oncogene Proteins c-sis/genetics , Proto-Oncogene Proteins c-sis/pharmacology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/pharmacology , Ultrasonography
16.
World J Stem Cells ; 13(2): 168-176, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33708345

ABSTRACT

Spinal cord injury (SCI) can permanently impair motor and sensory function and has a devastating cost to patients and the United States healthcare system. Stem cell transplantation for treatment of SCI is a new technique aimed at creating biological functional recovery. Operative techniques in stem cell transplantation for SCI are varied. We review various clinical treatment paradigms, surgical techniques and technical considerations important in SCI treatment. The NCBI PubMed database was queried for "SCI" and "stem cell" with a filter placed for "clinical trials". Thirty-nine articles resulted from the search and 29 were included and evaluated by study authors. A total of 10 articles were excluded (9 not SCI focused or transplantation focused, 1 canine model). Key considerations for stem cell transplantation include method of delivery (intravenous, intrathecal, intramedullary, or excision and engraftment), time course of treatment, number of treatments and time from injury until treatment. There are no phase III clinical trials yet, but decreased time from injury to treatment and a greater number of stem cell injections both seem to increase the chance of functional recovery.

17.
Elife ; 102021 01 14.
Article in English | MEDLINE | ID: mdl-33443012

ABSTRACT

Biomedical data are usually analyzed at the univariate level, focused on a single primary outcome measure to provide insight into systems biology, complex disease states, and precision medicine opportunities. More broadly, these complex biological and disease states can be detected as common factors emerging from the relationships among measured variables using multivariate approaches. 'Syndromics' refers to an analytical framework for measuring disease states using principal component analysis and related multivariate statistics as primary tools for extracting underlying disease patterns. A key part of the syndromic workflow is the interpretation, the visualization, and the study of robustness of the main components that characterize the disease space. We present a new software package, syndRomics, an open-source R package with utility for component visualization, interpretation, and stability for syndromic analysis. We document the implementation of syndRomics and illustrate the use of the package in case studies of neurological trauma data.


Subject(s)
Computational Biology , Public Health/methods , Software , Humans , Principal Component Analysis , Syndrome
18.
Int J Radiat Oncol Biol Phys ; 110(2): 539-550, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33346092

ABSTRACT

PURPOSE: Glioblastoma (GBM) is a devastating disease. With the current treatment of surgery followed by chemoradiation, outcomes remain poor, with median survival of only 15 months and a 5-year survival rate of 6.8%. A challenge in treating GBM is the heterogeneous integrity of the blood-brain barrier (BBB), which limits the bioavailability of systemic therapies to the brain. There is a growing interest in enhancing drug delivery by opening the BBB with the use of focused ultrasound (FUS). We hypothesize that an FUS-mediated BBB opening can enhance the delivery of etoposide for a therapeutic benefit in GBM. METHODS AND MATERIALS: A murine glioma cell line (Pdgf+, Pten-/-, P53-/-) was orthotopically injected into B6(Cg)-Tyrc-2J/J mice to establish the syngeneic GBM model for this study. Animals were treated with FUS and microbubbles to open the BBB to enhance the delivery of systemic etoposide. Magnetic resonance (MR) imaging was used to evaluate the BBB opening and tumor progression. Liquid chromatography tandem mass spectrometry was used to measure etoposide concentrations in the intracranial tumors. RESULTS: The murine glioma cell line is sensitive to etoposide in vitro. MR imaging and passive cavitation detection demonstrate the safe and successful BBB opening with FUS. The combined treatment of an FUS-mediated BBB opening and etoposide decreased tumor growth by 45% and prolonged median overall survival by 6 days: an approximately 30% increase. The FUS-mediated BBB opening increased the brain tumor-to-serum ratio of etoposide by 3.5-fold and increased the etoposide concentration in brain tumor tissue by 8-fold compared with treatment without ultrasound. CONCLUSIONS: The current study demonstrates that BBB opening with FUS increases intratumoral delivery of etoposide in the brain, resulting in local control and overall survival benefits.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Blood-Brain Barrier/physiology , Brain Neoplasms/drug therapy , Etoposide/administration & dosage , Glioblastoma/drug therapy , Ultrasonography, Interventional/methods , Animals , Antineoplastic Agents, Phytogenic/analysis , Blood-Brain Barrier/diagnostic imaging , Brain Neoplasms/chemistry , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/mortality , Cell Line, Tumor , Chromatography, Liquid , Contrast Media/administration & dosage , Disease Progression , Etoposide/analysis , Glioblastoma/chemistry , Glioblastoma/diagnostic imaging , Glioblastoma/mortality , Magnetic Resonance Imaging , Male , Mice , Microbubbles , Sonication , Tandem Mass Spectrometry
19.
Am J Perinatol ; 38(2): 131-139, 2021 01.
Article in English | MEDLINE | ID: mdl-31430819

ABSTRACT

OBJECTIVE: The study compares the short-term outcomes of late preterm infants (LPI) at an academic center in San Diego, California after a change in protocol that eliminated a previously mandatory 12-hour neonatal intensive care unit (NICU) observation period after birth. STUDY DESIGN: This is a retrospective observational study examining all LPI born with gestational age 35 to 366/7 weeks between October 1, 2016 and October 31, 2017. A total of 189 infants were included in the review. Short-term outcomes were analyzed before and after the protocol change. RESULTS: Transfers to the NICU from family-centered care (FCC) were considerably higher (23.2%) following the protocol change, compared to before (8.2%). More infants were transferred to the NICU for failed car seat tests postprotocol compared to preprotocol. Length of stay before the protocol change was 5.13 days compared to 4.80 days after. CONCLUSION: LPI are vulnerable to morbidities after delivery and through discharge. We found an increase in failed car seat tests in LPI cared for in FCC after elimination of a mandatory NICU observation after birth. The transitions of care from delivery to discharge are key checkpoints in minimizing complications.


Subject(s)
Infant, Premature , Intensive Care Units, Neonatal , Patient-Centered Care , Premature Birth/epidemiology , Adult , Child Restraint Systems , Female , Gestational Age , Humans , Infant, Newborn , Infant, Premature, Diseases/epidemiology , Length of Stay , Male , Pregnancy , Retrospective Studies , Triage/standards
20.
Nat Cancer ; 2(12): 1372-1386, 2021 12.
Article in English | MEDLINE | ID: mdl-35121903

ABSTRACT

Only a subset of recurrent glioblastoma (rGBM) responds to anti-PD-1 immunotherapy. Previously, we reported enrichment of BRAF/PTPN11 mutations in 30% of rGBM that responded to PD-1 blockade. Given that BRAF and PTPN11 promote MAPK/ERK signaling, we investigated whether activation of this pathway is associated with response to PD-1 inhibitors in rGBM, including patients that do not harbor BRAF/PTPN11 mutations. Here we show that immunohistochemistry for ERK1/2 phosphorylation (p-ERK), a marker of MAPK/ERK pathway activation, is predictive of overall survival following adjuvant PD-1 blockade in two independent rGBM patient cohorts. Single-cell RNA-sequencing and multiplex immunofluorescence analyses revealed that p-ERK was mainly localized in tumor cells and that high-p-ERK GBMs contained tumor-infiltrating myeloid cells and microglia with elevated expression of MHC class II and associated genes. These findings indicate that ERK1/2 activation in rGBM is predictive of response to PD-1 blockade and is associated with a distinct myeloid cell phenotype.


Subject(s)
Glioblastoma , Glioblastoma/drug therapy , Humans , Immunotherapy , MAP Kinase Signaling System , Neoplasm Recurrence, Local/drug therapy , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...