Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Neurosci Lett ; 832: 137804, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38692559

ABSTRACT

The present study aimed to investigate the role of agmatine in the neurobiology underlying memory impairment during ethanol withdrawal in rats. Sprague-Dawley rats were subjected to a 21-day chronic ethanol exposure regimen (2.4 % w/v ethanol for 3 days, 4.8 % w/v for the next 4 days, and 7.2 % w/v for the following 14 days), followed by a withdrawal period. Memory impairment was assessed using the passive avoidance test (PAT) at 24, 48, and 72 h post-withdrawal. The ethanol-withdrawn rats displayed a significant decrease in step-through latency in the PAT, indicative of memory impairment at 72 h post-withdrawal. However, administration of agmatine (40 µg/rat) and its modulators (L-arginine, arcaine, and amino-guanidine) significantly increases the latency time in the ethanol-withdrawn rats, demonstrating the attenuation of memory impairment. Further, pretreatment with imidazoline receptor agonists enhances agmatine's effects, while antagonists block them, implicating imidazoline receptors in agmatine's actions. Neurochemical analysis in ethanol-withdrawn rats reveals dysregulated glutamate and GABA levels, which was attenuated by agmatine and its modulators. By examining the effects of agmatine administration and modulators of endogenous agmatine, the study aimed to shed light on the potential therapeutic implications of agmatinergic signaling in alcohol addiction and related cognitive deficits. Thus, the present findings suggest that agmatine administration and modulation of endogenous agmatine levels hold potential as therapeutic strategies for managing alcohol addiction and associated cognitive deficits. Understanding the neurobiology underlying these effects paves the way for the development of novel interventions targeting agmatinergic signaling in addiction treatment.


Subject(s)
Agmatine , Cognitive Dysfunction , Ethanol , Rats, Sprague-Dawley , Substance Withdrawal Syndrome , Animals , Agmatine/pharmacology , Agmatine/therapeutic use , Substance Withdrawal Syndrome/metabolism , Substance Withdrawal Syndrome/drug therapy , Substance Withdrawal Syndrome/psychology , Male , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Rats , Biguanides/pharmacology , Glutamic Acid/metabolism , Arginine/pharmacology , gamma-Aminobutyric Acid/metabolism , Imidazoline Receptors/metabolism , Imidazoline Receptors/agonists , Avoidance Learning/drug effects
2.
Curr Pharm Des ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38482626

ABSTRACT

Neurodegenerative disorders are distinguished by the progressive loss of anatomically or physiologically relevant neural systems. Atypical mitochondrial morphology and metabolic malfunction are found in many neurodegenerative disorders. Alteration in mitochondrial function can occur as a result of aberrant mitochondrial DNA, altered nuclear enzymes that interact with mitochondria actively or passively, or due to unexplained reasons. Mitochondria are intimately linked to the Endoplasmic reticulum (ER), and ER-mitochondrial communication governs several of the physiological functions and procedures that are disrupted in neurodegenerative disorders. Numerous researchers have associated these disorders with ER-mitochondrial interaction disturbance. In addition, aberrant mitochondrial DNA mutation and increased ROS production resulting in ionic imbalance and leading to functional and structural alterations in the brain as well as cellular damage may have an essential role in disease progression via mitochondrial malfunction. In this review, we explored the evidence highlighting the role of mitochondrial alterations in neurodegenerative pathways in most serious ailments, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).

3.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37895912

ABSTRACT

Cardiotoxicity is a well-known adverse effect of cancer-related therapy that has a significant influence on patient outcomes and quality of life. The use of antineoplastic drugs to treat colorectal cancers (CRCs) is associated with a number of undesirable side effects including cardiac complications. For both sexes, CRC ranks second and accounts for four out of every ten cancer deaths. According to the reports, almost 39% of patients with colorectal cancer who underwent first-line chemotherapy suffered cardiovascular impairment. Although 5-fluorouracil is still the backbone of chemotherapy regimen for colorectal, gastric, and breast cancers, cardiotoxicity caused by 5-fluorouracil might affect anywhere from 1.5% to 18% of patients. The precise mechanisms underlying cardiotoxicity associated with CRC treatment are complex and may involve the modulation of various signaling pathways crucial for maintaining cardiac health including TKI ErbB2 or NRG-1, VEGF, PDGF, BRAF/Ras/Raf/MEK/ERK, and the PI3/ERK/AMPK/mTOR pathway, resulting in oxidative stress, mitochondrial dysfunction, inflammation, and apoptosis, ultimately damaging cardiac tissue. Thus, the identification and management of cardiotoxicity associated with CRC drug therapy while minimizing the negative impact have become increasingly important. The purpose of this review is to catalog the potential cardiotoxicities caused by anticancer drugs and targeted therapy used to treat colorectal cancer as well as strategies focused on early diagnosing, prevention, and treatment of cardiotoxicity associated with anticancer drugs used in CRC therapy.

4.
Mitochondrion ; 72: 59-71, 2023 09.
Article in English | MEDLINE | ID: mdl-37495165

ABSTRACT

Biological researchers are seeing organelles in a new light. These cellular entities have been believed to be singular and distinctive structures that performed specialized purposes for a very long time. But in recentpast years, scientists have learned that organelles become dynamic and make physical contact. Additionally, Biological processes are regulated by organelles interactions and its alteration play an important role in cell malfunctioning and several pathologies, including neurodegenerative diseases. Mitochondrial-ER contact sites (MERCS) have received considerable attention in the domain of cell homeostasis and dysfunction, specifically in the area of neurodegeneration. This is largely due to the significant role of this subcellular compartment in a diverse array of vital cellular functions, including Ca2+ homeostasis, transport, bioenergetics and turnover, mitochondrial dynamics, apoptotic signaling, ER stress, and inflammation. A significant number of disease-associated proteins were found to physically interact with the ER-Mitochondria (ER-MT) interface, causing structural and/or functional alterations in this compartment. In this review, we summarize current knowledge about the structure and functions of the ER-MT contact sites, as well as the possible repercussions of their alteration in notable neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and fronto-temporal dementia. The constraints and complexities in defining the nature and origin of the highlighted defects in ER-MT communication, as well as their concise contribution to the neurodegenerative process, are illustrated in particular. The possibility of using MERCS as a potential drug target to prevent neuronal damage and ultimately neurodegeneration is the topic of our final discussion.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Neurodegenerative Diseases/metabolism , Parkinson Disease/pathology
5.
Neurotox Res ; 41(6): 708-729, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37162686

ABSTRACT

Neurodegenerative diseases (NDD) are incurable and the most prevalent cognitive and motor disorders of elderly. Mitochondria are essential for a wide range of cellular processes playing a pivotal role in a number of cellular functions like metabolism, intracellular signaling, apoptosis, and immunity. A plethora of evidence indicates the central role of mitochondrial functions in pathogenesis of many aging related NDD. Considering how mitochondria function in neurodegenerative diseases, oxidative stress, and mutations in mtDNA both contribute to aging. Many substantial reports suggested the involvement of numerous contributing factors including, mitochondrial dysfunction, oxidative stress, mitophagy, accumulation of somatic mtDNA mutations, compromised mitochondrial dynamics, and transport within axons in neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic Lateral Sclerosis. Therapies therefore target fundamental mitochondrial processes such as energy metabolism, free-radical generation, mitochondrial biogenesis, mitochondrial redox state, mitochondrial dynamics, mitochondrial protein synthesis, mitochondrial quality control, and metabolism hold great promise to develop pharmacological based therapies in NDD. By emphasizing the most efficient pharmacological strategies to target dysfunction of mitochondria in the treatment of neurodegenerative diseases, this review serves the scientific community engaged in translational medical science by focusing on the establishment of novel, mitochondria-targeted treatment strategies.


Subject(s)
Neurodegenerative Diseases , Humans , Aged , Neurodegenerative Diseases/metabolism , Mitochondria/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/therapeutic use , Oxidative Stress , Aging
6.
Biophys Rev ; 15(2): 239-255, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37124925

ABSTRACT

Mitochondria are the primary cellular energy generators, supplying the majority of adenosine triphosphate through oxidative phosphorylation, which is necessary for neuron function and survival. Mitophagy is the metabolic process of eliminating dysfunctional or redundant mitochondria. It is a type of autophagy and it is crucial for maintaining mitochondrial and neuronal health. Impaired mitophagy leads to an accumulation of damaged mitochondria and proteins leading to the dysregulation of mitochondrial quality control processes. Recent research shows the vital role of mitophagy in neurons and the pathogenesis of major neurodegenerative diseases. Mitophagy also plays a major role in the process of aging. This review describes the alterations that are being caused in the mitophagy process at the molecular level in aging and in neurodegenerative diseases, particularly Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis, also looks at how mitophagy can be exploited as a therapeutic target for these diseases.

7.
Curr Gene Ther ; 23(1): 3-19, 2023.
Article in English | MEDLINE | ID: mdl-34814817

ABSTRACT

The gene therapy is alluring not only for CNS disorders but also for other pathological conditions. Gene therapy employs the insertion of a healthy gene into the identified genome to replace or replenish genes responsible for pathological disorder or damage due to trauma. The last decade has seen a drastic change in the understanding of vital aspects of gene therapy. Despite the complexity of traumatic brain injury (TBI), the advent of gene therapy in various neurodegenerative disorders has reinforced the ongoing efforts of alleviating TBI-related outcomes with gene therapy. The review highlights the genes modulated in response to TBI and evaluates their impact on the severity and duration of the injury. We have reviewed strategies that pinpointed the most relevant gene targets to restrict debilitating events of brain trauma and utilize vector of choice to deliver the gene of interest at the appropriate site. We have made an attempt to summarize the long-term neurobehavioral consequences of TBI due to numerous pathometabolic perturbations associated with a plethora of genes. Herein, we shed light on the basic pathological mechanisms of brain injury, genetic polymorphism in individuals susceptible to severe outcomes, modulation of gene expression due to TBI, and identification of genes for their possible use in gene therapy. The review also provides insights on the use of vectors and challenges in translations of this gene therapy to clinical practices.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Humans , Brain , Brain Injuries/genetics , Brain Injuries/therapy , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/therapy , Genetic Therapy , Polymorphism, Genetic
8.
Biomed Pharmacother ; 147: 112647, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35149361

ABSTRACT

Protein misfolding causes aggregation and build-up in a variety of brain diseases. There are numeral molecules that are linked with the protein homeostasis mechanism. Molecular chaperones are one of such molecules that are responsible for protection against protein misfolded and aggregation-induced neurotoxicity. Many studies have explored the participation of molecular chaperones in Parkinson's disease, Alzheimer's disease, Amyotrophic lateral sclerosis, and Huntington's diseases. In this review, we highlighted the constructive role of molecular chaperones in neurological diseases characterized by protein misfolding and aggregation and their capability to control aberrant protein interactions at an early stage thus successfully suppressing pathogenic cascades. A comprehensive understanding of the protein misfolding associated with brain diseases and the molecular basis of involvement of chaperone against aggregation-induced cellular stress might lead to the progress of new therapeutic intrusion-related to protein misfolding and aggregation.


Subject(s)
Molecular Chaperones/metabolism , Proteostasis Deficiencies/pathology , Alzheimer Disease/pathology , Amyotrophic Lateral Sclerosis/pathology , Autophagy/physiology , Brain/metabolism , Huntington Disease/pathology , Parkinson Disease/pathology , Proteasome Endopeptidase Complex/metabolism , Proteostasis/physiology , Ubiquitin/metabolism
9.
Curr Aging Sci ; 15(1): 2-25, 2022.
Article in English | MEDLINE | ID: mdl-33653258

ABSTRACT

BACKGROUND: Alzheimer's Disease (AD) is the most common cause of dementia. Genetics, excessive exposure to environmental pollutants, as well as unhealthy lifestyle practices are often linked to the development of AD. No therapeutic approach has achieved complete success in treating AD; however, early detection and management with appropriate drugs are key to improving prognosis. INTERVENTIONS: The pathogenesis of AD was extensively discussed in order to understand the reasons for the interventions suggested. The interventions reviewed include the use of different therapeutic agents and approaches, gene therapy, adherence to healthy dietary plans (Mediterranean diet, Okinawan diet and MIND diet), as well as the use of medicinal plants. The potential of nanotechnology as a multidisciplinary and interdisciplinary approach in the design of nano-formulations of AD drugs and the use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as theranostic tools for early detection of Alzheimer's disease were also discussed.


Subject(s)
Alzheimer Disease , Diet, Mediterranean , Alzheimer Disease/diagnosis , Alzheimer Disease/epidemiology , Alzheimer Disease/etiology , Early Diagnosis , Humans
10.
Curr Mol Pharmacol ; 15(1): 51-76, 2022.
Article in English | MEDLINE | ID: mdl-34515018

ABSTRACT

Sports deserve a special place in human life to impart healthy and refreshing wellbeing. However, sports activities, especially contact sports, renders athlete vulnerable to brain injuries. Athletes participating in a contact sport like boxing, rugby, American football, wrestling, and basketball are exposed to traumatic brain injuries (TBI) or concussions. The acute and chronic nature of these heterogeneous injuries provides a spectrum of dysfunctions that alters the neuronal, musculoskeletal, and behavioral responses of an athlete. Many sports-related brain injuries go unreported, but these head impacts trigger neurometabolic disruptions that contribute to long-term neuronal impairment. The pathophysiology of post-concussion and its underlying mechanisms are undergoing intense research. It also shed light on chronic disorders like Parkinson's disease, Alzheimer's disease, and dementia. In this review, we examined post-concussion neurobehavioral changes, tools for early detection of signs, and their impact on the athlete. Further, we discussed the role of nutritional supplements in ameliorating neuropsychiatric diseases in athletes.


Subject(s)
Athletic Injuries , Brain Concussion , Football , Athletes , Athletic Injuries/psychology , Brain Concussion/complications , Brain Concussion/psychology , Football/injuries , Humans
11.
Asian J Psychiatr ; 68: 102961, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34890930

ABSTRACT

One of the comorbid conditions in an individual with Alzheimer's disease is a sleep disorder. Clinical features of sleep disorders involve various sleep disturbances such as Obstructive Sleep Apnea (OSAS), Excessive Daytime Sleepiness (EDS), Rapid Eye Movement (REM), Breathing Disorders, Periodic limb movements in sleep (PLMS), etc. The primary tools used for the identification of such disturbances are Polysomnography (PSG) and Wrist actigraphy. This review will highlight and explains the different approaches used in the treatment of sleep disorders. Non-pharmacological treatments include Peter Hauri rules, sleep education program, and light therapy which play a key role in the regulation of sleep-wake cycles. Pharmacological therapy described in this article may be useful in treating sleep destruction in patients with Alzheimer's disease. Along with the Non-pharmacological and pharmacological treatment, here we discuss five commonly recognized plant-based nutraceuticals with hypothesized impact on sleep disorders: caffeine, chamomile, cherries, L-tryptophan, and valerian by the proper emphasis on the known mechanism of their action.


Subject(s)
Alzheimer Disease , Disorders of Excessive Somnolence , Sleep Wake Disorders , Alzheimer Disease/drug therapy , Humans , Polysomnography , Sleep , Sleep Wake Disorders/drug therapy
12.
Biomed Pharmacother ; 143: 112146, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34507113

ABSTRACT

Epilepsy is the most common neurological disorder, affecting nearly 50 million people worldwide. The condition can be manifested either due to genetic predisposition or acquired from acute insult which leads to alteration of cellular and molecular mechanisms. Evaluating the latest and the current knowledge in regard to the mechanisms underlying molecular and cellular alteration, hyperexcitability is a consequence of an imbalanced state wherein enhance excitatory glutamatergic and reduced inhibitory GABAergic signaling is considered to be accountable for seizures associated damage. However, neurodegeneration contributing to epileptogenesis has become increasingly appreciated. The components at the helm of neurodegenerative alterations during epileptogenesis include GABAergic neuronal and receptor changes, neuroinflammation, alteration in axonal transport, oxidative stress, excitotoxicity, and other cellular as well as functional changes. Targeting neurodegeneration with vitamin E as an antioxidant, anti-inflammatory and neuroprotective may prove to be one of the therapeutic approaches useful in managing epilepsy. In this review, we discuss and converse about the seizure-induced episodes as a link for the development of neurodegenerative and pathological consequences of epilepsy. We also put forth a summary of the potential intervention with vitamin E therapy in the management of epilepsy.


Subject(s)
Anticonvulsants/therapeutic use , Brain Waves/drug effects , Brain/drug effects , Epilepsy/drug therapy , Nerve Degeneration , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/therapeutic use , Vitamin E/therapeutic use , Animals , Anti-Inflammatory Agents/therapeutic use , Anticonvulsants/adverse effects , Antioxidants/therapeutic use , Brain/metabolism , Brain/physiopathology , Epilepsy/epidemiology , Epilepsy/metabolism , Epilepsy/physiopathology , Humans , Inflammation Mediators/metabolism , Neurodegenerative Diseases/epidemiology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/physiopathology , Neuroprotective Agents/adverse effects , Oxidative Stress/drug effects , Prognosis , Risk Assessment , Risk Factors , Signal Transduction , Vitamin E/adverse effects
13.
Toxicol Int ; 21(3): 294-9, 2014.
Article in English | MEDLINE | ID: mdl-25948969

ABSTRACT

INTRODUCTION: Present study was designed to evaluate the protective effects of ethanolic extract of Dioscorea alata L. (DA) on hematological and biochemical changes in aniline-induced spleen toxicity in rats. MATERIALS AND METHODS: Wistar rats of either sex (200-250g) were used in the study and each group contains six rats. Splenic toxicity was induced in rats by administration of aniline hydrochloride (AH; 100 ppm) in drinking water for a period of 30 days. Treatment groups received DA (50 and 100 mg/kg/day, po) along with AH. At the end of treatment period, various serum and tissue parameters were evaluated. RESULT: Rats administered with AH (100 ppm) in drinking water for 30 days showed a significant alteration in general parameters (organ weight, body weight, water intake, feed consumption, and fecal matter content), hematological parameters (red blood cell (RBC), white blood cell (WBC), and hemoglobin content), and biochemical parameters (total iron content, lipid peroxidation, reduced glutathione (GSH), and nitric oxide (NO) content) of spleen. Treatment with DA (50 and 100 mg/kg/day, po) for 30 days along with AH showed significant recovery in aniline-induced splenic toxicity. CONCLUSION: The present result showed that involvement of oxidative and nitrosative stress in aniline-induced splenic toxicity and DA protects the rats from the toxicity, which might be due to its antioxidant property and the presence of different phytochemicals.

SELECTION OF CITATIONS
SEARCH DETAIL
...