Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 41(2): 386-401, 2023 02.
Article in English | MEDLINE | ID: mdl-34878960

ABSTRACT

Herein, a series of novel antipyrine based α-aminophosphonates derivatives were synthesized and characterized. The synthesized derivatives were subjected for in vitro cholinesterase inhibition, enzyme kinetic studies, protein denaturation assay, proteinase inhibitory assay and cell viability assay. For cholinesterase inhibition, the results inferred that the test compounds possess better AChE activity (0.46 to 6.67 µM) than BuChE (2.395 to 12.47 µM). Compound 4j inhibited both AChE and BuChE (IC50 = 0.475 ± 0.12 µM and 2.95 ± 0.16 µM, respectively), implying that it serves as a dual AChE/BuChE inhibitor. Also, kinetic studies revealed that compound 4j exhibits mixed-type inhibition against both AChE and BuChE, with Ki values of 3.003 µM and 5.750 µM, respectively. Further, protein denaturation and proteinase inhibitory assays were used to test in vitro anti-inflammatory potential. It was found that compound 4o exhibited highest activity against protein denaturation (IC50 = 42.64 ± 0.19 µM) and proteinase inhibition (IC50 = 37.57 ± 0.19 µM) when compared to diclofenac. In addition, cell viability assay revealed that active compounds possess no cytotoxicity against N2a cell and RAW 264.7 macrophages. Finally, molecular docking experiments for AChE, BuChE, and COX-2 were conducted to better understand the binding modes of active compounds.Communicated by Ramaswamy H. Sarma.


Subject(s)
Alzheimer Disease , Cholinesterase Inhibitors , Humans , Molecular Docking Simulation , Cholinesterase Inhibitors/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Antipyrine/therapeutic use , Kinetics , Acetylcholinesterase/chemistry , Anti-Inflammatory Agents/pharmacology , Peptide Hydrolases/metabolism , Structure-Activity Relationship , Molecular Structure
2.
J Biomol Struct Dyn ; 40(11): 4801-4814, 2022 07.
Article in English | MEDLINE | ID: mdl-33345710

ABSTRACT

A series of novel carbazole based α-aminophosphonate derivatives were synthesized under solvent-free condition, characterized and evaluated for their cholinesterase inhibition, enzyme kinetic inhibition, in-vitro cell viability using N2a cells, neuroprotective studies against H2O2-induced stress using N2a cells and antioxidant studies using DPPH radical activity. Test compounds displayed better AChE activity (0.475 to 7.781 µM) than BuChE (3.306 to 21.32 µM). Compound 4j was most potent derivative against AChE as well as BuChE with IC50=0.475 ± 0.12 µM and IC50=3.306 ± 0.21 µM respectively. Kinetic inhibition studies indicate that compound 4j exhibits mixed type inhibition against both enzymes which was supported by molecular docking studies. Cell viability studies showed that compounds did not induce any cytotoxic effect against N2a cells using MTT assay. Also, compound 4j, 4 s and 4r were subjected to H2O2-induced stress using N2a cells and were found to be protective in nature. ADME predictions were carried out to understand the pharmacokinetics behaviour.Communicated by Ramaswamy H. Sarma.


Subject(s)
Acetylcholinesterase , Cholinesterase Inhibitors , Acetylcholinesterase/chemistry , Carbazoles/pharmacology , Cholinesterase Inhibitors/chemistry , Hydrogen Peroxide , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
3.
Bioorg Chem ; 116: 105397, 2021 11.
Article in English | MEDLINE | ID: mdl-34628223

ABSTRACT

A series of novel 2,3,4,5-tetrahydrobenzothiazepine appended α-aminophosphonate derivatives were synthesized by subjecting 2,3-dihydrobenzothiazepine to Pudovik reaction using diethyl phosphite. Tested derivatives exhibited better AChE inhibition (0.86-12.85 µM) when compared to BuChE (3.13-19.36 µM). Derivative 5f (IC50 = 0.86 ± 0.08 µM), 5g (IC50 = 1.05 ± 0.06 µM) and 5d (IC50 = 1.64 ± 0.06 µM) exhibited higher AChE inhibitory activity as compared to standard drug galantamine (IC50 = 2.15 ± 0.05 µM). Similarly, derivative 5e (IC50 = 3.13 ± 0.11 µM) and 5f (IC50 = 3.64 ± 0.06 µM) demonstrated comparable BuChE inhibitory activity to reference drug galantamine (IC50 = 3.86 ± 0.03 µM). Further, enzyme kinetic studies were carried out for the most active molecule i.e. derivative 5f (for AChE) and derivative 5e (for BuChE) and the results imply that derivatives 5f and 5e show mixed-type inhibition with Ki values of 1.779 µM and 3.851 µM respectively. Enzyme reversibility inhibition studies demonstrated that all the tested derivatives possess reversible inhibitor characteristics. In addition, % hemolysis studies were carried out using human red blood cells (hRBCs) and the results demonstrated that the synthesized derivatives were biocompatible in nature as they impart very less cytotoxicity to hRBCs (CC50 > 1000 µg/mL). Also, cell viability studies for tested derivatives revealed no cytotoxicity in N2a cells. Moreover, molecular docking studies revealed that derivative 5e and 5f bind to the PAS and CAS of the AChE. ADME predictions suggested that synthesized derivatives have high possibility of being drug-like.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Molecular Docking Simulation , Organophosphonates/pharmacology , Thiazepines/pharmacology , Cell Survival/drug effects , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Erythrocytes/drug effects , Humans , Molecular Structure , Organophosphonates/chemistry , Structure-Activity Relationship , Thiazepines/chemical synthesis , Thiazepines/chemistry
4.
Bioorg Chem ; 110: 104770, 2021 05.
Article in English | MEDLINE | ID: mdl-33667902

ABSTRACT

A series of novel dihydropyranoindole derivatives containing sulphonamide group were designed, synthesized and evaluated for in-vitro anti-cholinesterase activity. The result showed that all the compounds exhibited potent acetylcholinesterase (AChE) activity (IC50 = 0.41-8.79 µM) while demonstrated moderate to good activity for butyrylcholinesterase (BuChE) (IC50 = 1.17-30.17 µM). The tested compounds exhibited selectivity towards AChE over BuChE. Compound 5o was most potent towards both AChE (IC50 = 0.41 µM) and BuChE (IC50 = 1.17 µM) when compared to standard galantamine and rivastigmine. Enzyme kinetics and molecular docking studies revealed that compound 5o shows mixed type inhibition and binds to peripheral anionic site (PAS) and the catalytic sites (CAS) of both the enzymes. Furthermore, cell viability studies were also performed against N2a cells along with neuroprotection studies against H2O2 in the same cell line. Antioxidant studies using DPPH radical and H2O2 were also performed which revealed that all compounds possessed some antioxidant activity. Also, DNA damage protection assay for compound 5o was performed implying that compound 5o was protective in nature. ADME studies were also performed which demonstrated good pharmacokinetics. These findings indicated that dihydropyranoindole derivatives could be possible drug lead in the search for new multifunctional AD drugs.


Subject(s)
Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Drug Design , Indoles/chemical synthesis , Indoles/pharmacology , Acetylcholinesterase , Biphenyl Compounds , Butyrylcholinesterase , Cell Line, Tumor , Cell Survival/drug effects , DNA Damage , Dose-Response Relationship, Drug , Free Radical Scavengers , Humans , Hydrogen Peroxide , Indoles/administration & dosage , Molecular Structure , Picrates
SELECTION OF CITATIONS
SEARCH DETAIL
...