Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-492112

ABSTRACT

Severe coronavirus disease (COVID-19) is accompanied with acute respiratory distress syndrome & pulmonary pathology, and is presented mostly with inflammatory cytokine release, dysregulated immune response, skewed neutrophil/ lymphocyte ratio, and hypercoagulable state. Though vaccinations have proved effective in reducing the COVID-19 related mortality, the limitation of use of vaccine against immunocompromised, comorbidity, and emerging variants remains a concern. In the current study we investigate for the first-time the efficacy of Glycyrrhiza glabra (GG) extract, a potent immunomodulator, against SARS-CoV-2 infection in hamsters. Prophylactic treatment with GG showed protection against loss in body weight and 35-40% decrease in lung viral load along with reduced lung pathology in the hamster model. Remarkably, GG reduced the mRNA expression of pro-inflammatory cytokines and Plasminogen activator inhibito-1 (PAI-1). In-vitro, GG acted as potent immunomodulator by reducing Th2 and Th17 differentiation and IL-4 and IL-17A cytokine production. In addition, GG also showed robust potential to suppress ROS, mtROS and NETs generation in a concentration dependent manner in both human polymorphonuclear neutrophils (PMNs) and murine bone marrow derived neutrophils (BMDNs). Taken together, we provide evidence for the protective efficacy of GG against COVID-19 and its putative mechanistic insight, which might be developed as a future immunomodulatory approach against various pathologies with high cytokine production, aberrant neutrophil activation including coronavirus infection.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-483930

ABSTRACT

The underlying factors contributing to the evolution of SARS-CoV-2-specific T cell responses during COVID-19 infection remain unidentified. To address this, we characterized innate and adaptive immune responses with metabolomic profiling longitudinally at three different time points (0-3, 7-9, and 14-16 days post-COVID-19 positivity) from young mildly symptomatic active COVID-19 patients infected during the first wave in mid-2020. We observed that anti-RBD IgG and viral neutralization are significantly reduced against the Delta variant compared to the ancestral strain. In contrast, compared to the ancestral strain, T cell responses remain preserved against the delta and omicron variants. We determined innate immune responses during the early stage of active infection in response to TLR 3/7/8 mediated activation in PBMCs and serum metabolomic profiling. Correlation analysis indicated PBMCs-derived proinflammatory cytokines, IL-18, IL-1{beta}, and IL-23, and the abundance of plasma metabolites involved in arginine biosynthesis were predictive of a robust SARS-CoV-2-specific Th1 response at a later stage (two weeks after PCR positivity). These observations may contribute to designing effective vaccines and adjuvants that promote innate immune responses and metabolites to induce long-lasting anti-SARS-CoV-2 specific T cells response.

SELECTION OF CITATIONS
SEARCH DETAIL
...