Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Cardiovasc Dev Dis ; 10(12)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38132658

ABSTRACT

Electroporation is used in medicine for drug and gene delivery, and as a nonthermal ablation method in tumor treatment and cardiac ablation. Electroporation involves delivering high-voltage electric pulses to target tissue; however, this can cause effects beyond the intended target tissue like nerve stimulation, muscle contractions and pain, requiring use of sedatives or anesthetics. It was previously shown that adjusting pulse parameters may mitigate some of these effects, but not how these adjustments would affect electroporation's efficacy. We investigated the effect of varying pulse parameters such as interphase and interpulse delay while keeping the duration and number of pulses constant on nerve stimulation, muscle contraction and assessing pain and electroporation efficacy, conducting experiments on human volunteers, tissue samples and cell lines in vitro. Our results show that using specific pulse parameters, particularly short high-frequency biphasic pulses with short interphase and long interpulse delays, reduces muscle contractions and pain sensations in healthy individuals. Higher stimulation thresholds were also observed in experiments on isolated swine phrenic nerves and human esophagus tissues. However, changes in the interphase and interpulse delays did not affect the cell permeability and survival, suggesting that modifying the pulse parameters could minimize adverse effects while preserving therapeutic goals in electroporation.

2.
Exp Biol Med (Maywood) ; 247(7): 584-597, 2022 04.
Article in English | MEDLINE | ID: mdl-35068214

ABSTRACT

The isolated tissue bath research methodology was first developed in 1904. Since then, it has been recognized as an important tool in pharmacology and physiology research, including investigations into neuromuscular disorders. The tissue bath is still used routinely as the instrument for performing the "gold standard" test for clinical diagnosis of malignant hyperthermia susceptibility - the caffeine-halothane contracture test. Our research group has utilized this tool for several decades for a range of research studies, and we are currently one of four North American diagnostic centers for determining susceptibility for malignant hyperthermia. This review provides a brief summary of some of the historical uses of the tissue bath. Important experimental considerations for the operation of the tissue bath are further described. Finally, we discuss the different studies our group has performed using isolated tissue baths to highlight the broad potential applications.


Subject(s)
Malignant Hyperthermia , Baths , Caffeine/pharmacology , Humans , In Vitro Techniques , Laboratories , Malignant Hyperthermia/diagnosis , Muscle Contraction/physiology , Research Design , Translational Research, Biomedical
3.
J Orthop Trauma ; 34(10): 518-523, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32379231

ABSTRACT

OBJECTIVES: To identify potential physiologic markers of muscle ischemia to serve as diagnostic indicators of compartment syndrome. We hypothesize that muscle bundles in hypoxic conditions will elicit decreases in potential hydrogen (pH) and increases in lactate and potassium that correlates with decreased muscle twitch forces. METHODS: We performed an ex vivo evaluation of individual skeletal muscle bundles obtained from a swine's diaphragm that were exposed to hypoxic conditions and compared with control groups. Over a 4-hour period, we evaluated the following parameters for each muscle bundle: muscle twitch forces and levels of potassium, lactate, and pH. Comparisons between the hypoxic and control groups were calculated at each time point using the 2-tailed Wilcoxon rank sum test for nonparametric data. Longitudinal associations between biomarkers and muscle twitch forces were tested using repeated measures analyses. RESULTS: The hypoxic group elicited more significant decreases in normalized muscle twitch forces than the control group at all time points (0.15 g vs. 0.55 g at 4 hours, P < 0.001). Repeated measures analyses of the hypoxic group demonstrated a statistically significant association between potassium, lactate, and normalized peak force over the course of time. Potassium demonstrated the strongest association with a 1 mmol/L unit increase in potassium associated with a 2.9 g decrease in normalized peak force (95% confidence interval -3.3 to -2.4, P < 0.001). The pH of all muscle baths increased over the course of time at similar rates between the study groups. CONCLUSIONS: This study used an ex vivo ischemic skeletal muscle model as a representation for pathophysiologic pathways associated with compartment syndrome. In this experimental approach we were unable to evaluate the pH of the muscle bundles due to continuous applied gassing. Our findings support further evaluations of potassium and lactate levels as potential diagnostic markers.


Subject(s)
Compartment Syndromes , Muscle, Skeletal , Biomarkers , Compartment Syndromes/diagnosis , Humans , Ischemia/diagnosis
4.
Skelet Muscle ; 10(1): 10, 2020 04 22.
Article in English | MEDLINE | ID: mdl-32321586

ABSTRACT

BACKGROUND: Defects in α-dystroglycan (DG) glycosylation characterize a group of muscular dystrophies known as dystroglycanopathies. One of the key effectors in the α-DG glycosylation pathway is the glycosyltransferase fukutin-related protein (FKRP). Mutations in FKRP lead to a large spectrum of muscular dystrophies, including limb girdle muscular dystrophy 2I (LGMD2I). It remains unknown whether stem cell transplantation can promote muscle regeneration and ameliorate the muscle wasting phenotype associated with FKRP mutations. RESULTS: Here we transplanted murine and human pluripotent stem cell-derived myogenic progenitors into a novel immunodeficient FKRP-mutant mouse model by intra-muscular injection. Upon both mouse and human cell transplantation, we observe the presence of donor-derived myofibers even in absence of pre-injury, and the rescue of α-DG functional glycosylation, as shown by IIH6 immunoreactivity. The presence of donor-derived cells expressing Pax7 under the basal lamina is indicative of satellite cell engraftment, and therefore, long-term repopulation potential. Functional assays performed in the mouse-to-mouse cohort revealed enhanced specific force in transplanted muscles compared to PBS-injected controls. CONCLUSIONS: Altogether, our data demonstrate for the first time the suitability of a cell-based therapeutic approach to improve the muscle phenotype of dystrophic FKRP-mutant mice.


Subject(s)
Genetic Therapy/methods , Muscle Fibers, Skeletal/cytology , Muscular Dystrophies, Limb-Girdle/therapy , Pentosyltransferases/genetics , Stem Cell Transplantation/methods , Animals , Cell Differentiation , Cells, Cultured , Dystroglycans/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Muscle Fibers, Skeletal/metabolism , Muscular Dystrophies, Limb-Girdle/genetics , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , Pentosyltransferases/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism
5.
Biomimetics (Basel) ; 3(3)2018 Sep 18.
Article in English | MEDLINE | ID: mdl-31105249

ABSTRACT

Surgical repair of hernia and prolapse with prosthetic meshes are well-known to cause pain, infection, hernia recurrence, and mesh contraction and failures. In literature, mesh failure mechanics have been studied with uniaxial, biaxial, and cyclic load testing of dry and wet meshes. Also, extensive experimental studies have been conducted on surrogates, such as non-human primates and rodents, to understand the effect of mesh stiffness, pore size, and knitting patterns on mesh biocompatibility. However, the mechanical properties of such animal tissue surrogates are widely different from human tissues. Therefore, to date, mechanics of the interaction between mesh and human tissues is poorly understood. This work addresses this gap in literature by experimentally and computationally modeling the biomechanical behavior of mesh, sutured to human tissue phantom under tension. A commercially available mesh (Prolene®) was sutured to vaginal tissue phantom material and tested at different uniaxial strains and strain rates. Global and local stresses at the tissue phantom, suture, and mesh were analyzed. The results of this study provide important insights into the mechanics of prosthetic mesh failure and will be indispensable for better mesh design in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...