Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 23(2): 638-48, 2007 Jan 16.
Article in English | MEDLINE | ID: mdl-17209615

ABSTRACT

Nanolithography processes based on designed, precision thickness multilayer thin films (molecular rulers) have been reported that enable patterning of features on surfaces from a few to the hundred nanometer range. These strategies are unique in their potential ability to enable wafer scale patterning of features of just a few nanometers. If these techniques could be developed to be sufficiently precise and generally applicable, they would fill a long-standing need in nanoscience. In this study a systematic and detailed analysis of the growth mechanisms and molecular layer structures has been carried out for the mercaptoalkanoic acid-copper ion multilayer thin film system currently used as the standard nanolithography resist. Our results show these films form via a redox reaction of thiol groups with surface-ligated Cu(II) ions to form adlayers at only approximately 50% coverage with islanding of the alkyl chains, thereby leading to rough topographies and less than theoretical thicknesses based on a 1:1 ideal adlayer. Strategies are suggested to help overcome these issues for molecular resist applications in nanolithographic processing.

2.
Langmuir ; 21(24): 11061-70, 2005 Nov 22.
Article in English | MEDLINE | ID: mdl-16285772

ABSTRACT

Self-assembled monolayers (SAMs) of the isocyano derivative of 4,4'-di(phenylene-ethynylene)benzene (1), a member of the "OPE" family of "molecular wires" of current interest in molecular electronics, have been prepared on smooth, {111} textured films of Au and Pd. For assembly in oxygen-free environments with freshly deposited metal surfaces, infrared reflection spectroscopy (IRS) indicates the molecules assume a tilted structure with average tilt angles of 18-24 degrees from the surface normal. The combination of IRS, X-ray photoelectron spectroscopy, and density functional theory calculations all support a single sigma-type bond of the -NC group to the Au surface and a sigma/pi-type of bond to the Pd surface. Both SAMs show significant chemical instability when exposed to typical ambient conditions. In the case of the Au SAM, even a few hours storage in air results in significant oxidation of the -NC moieties to -NCO (isocyanate) with an accompanying decrease in surface chemical bonding, as evidenced by a significant increase in instability toward dissolution in solvent. In the case of the Pd SAM, similar air exposure does not result in incorporation of oxygen or loss of solvent resistance but rather results in a chemically altered interface which is attributed to polymerization of the -NC moieties to quasi-2D poly(imine) structures. Conductance probe atomic force microscope measurements show the conductance of the degraded Pd SAMs can diminish by approximately 2 orders of magnitude, an indication that the SAM-Pd electrical contact has severely degraded. These results underscore the importance of careful control of the assembly procedures for aromatic isocyanide SAMs, particularly for applications in molecular electronics where the molecule-electrode junction is critical to the operational characteristics of the device.

3.
J Phys Chem B ; 109(44): 21006-14, 2005 Nov 10.
Article in English | MEDLINE | ID: mdl-16853723

ABSTRACT

The combination of in situ X-ray photoelectron spectroscopy, infrared reflection spectroscopy, atomic force microscopy, and time-of-flight secondary ion mass spectrometry are used to probe the nature of the evolving interface chemistry and metal morphology arising from Ti vapor deposition onto the surface of a CH(3)(CH(2))(15)S/Au{111} self-assembled monolayer (SAM) at ambient temperature. The results show that for a deposition rate of approximately 0.15 Ti atom.nm(-2).s(-1) a highly nonuniform Ti overlayer is produced via a process in which a large fraction of impinging Ti atoms do not stick to the bare SAM surface. The adsorbed atoms form isolated Ti clusters and react with CH(3) groups to form carbide products at the cluster-SAM interfaces. Further growth of Ti clusters appears to be concentrated at these scattered reaction centers. The SAM molecules in the local vicinity are subsequently degraded to inorganic products, progressing deeper into the monolayer as the deposition proceeds to give an inorganic/organic nanocomposite. A continuous overlayer does not form until metal coverage approaches approximately 50 Ti atoms per SAM molecule. These data indicate that for applications such as molecular device contacts the use of Ti may be highly problematic, suffering from both a highly nonuniform contact area and the presence of extensive inorganic products such as nonstoichiometric carbides and hydrides.

SELECTION OF CITATIONS
SEARCH DETAIL
...