Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Phys Lipids ; 132(1): 3-14, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15530443

ABSTRACT

Atomic force microscopy (AFM) is employed to observe the effect of poly(amidoamine) (PAMAM) dendrimers on 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayers. Aqueous solutions of generation 7 PAMAM dendrimers cause the formation of holes 15-40 nm in diameter in previously intact bilayers. This effect is observed for two different branch end-groups--amine and carboxyl. In contrast, carboxyl-terminated core-shell tectodendrimer clusters do not create holes in the lipid membrane but instead show a strong affinity to adsorb to the edges of existing bilayer defects. A possible mechanism for the formation of holes in the lipid bilayer is proposed. The dendrimers remove lipid molecules from the substrate and form aggregates consisting of a dendrimer surrounded by lipid molecules. Dynamic light scattering (DLS) measurements as well as 31P NMR data support this explanation. The fact that tectodendrimers behave differently suggests that their cluster-like architecture plays an important role in their interaction with the lipid bilayer.


Subject(s)
Dimyristoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry , Liposomes/chemistry , Membrane Fluidity , Polyamines/chemistry , Macromolecular Substances , Magnetic Resonance Spectroscopy , Membranes, Artificial , Microscopy, Atomic Force , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...