Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38792100

ABSTRACT

Carbonization of biomass residues followed by activation has great potential to become a safe process for the production of various carbon materials for various applications. Demand for commercial use of biomass-based carbon materials is growing rapidly in advanced technologies, including in the energy sector, as catalysts, batteries and capacitor electrodes. In this study, carbon materials were synthesized from hardwood using two carbonization methods, followed by activation with H3PO4, KOH and NaOH and doping with nitrogen. Their chemical composition, porous structure, thermal stability and structural order of samples were studied. It was shown that, despite the differences, the synthesized carbon materials are active catalysts for oxygen reduction reactions. Among the investigated carbon materials, NaOH-activated samples exhibited the lowest Tafel slope values, of -90.6 and -88.0 mV dec-1, which are very close to the values of commercial Pt/C at -86.6 mV dec-1.

2.
Materials (Basel) ; 16(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834564

ABSTRACT

A Pt-coated Ni layer supported on a Ni foam catalyst (denoted PtNi/Nifoam) was investigated for the electro-oxidation of the formic acid (FAO) in acidic media. The prepared PtNi/Nifoam catalyst was studied as a function of the formic acid (FA) concentration at bare Pt and PtNi/Nifoam catalysts. The catalytic activity of the PtNi/Nifoam catalysts, studied on the basis of the ratio of the direct and indirect current peaks (jd)/(jnd) for the FAO reaction, showed values approximately 10 times higher compared to those on bare Pt, particularly at low FA concentrations, reflecting the superiority of the former catalysts for the electro-oxidation of FA to CO2. Ni foams provide a large surface area for the FAO, while synergistic effects between Pt nanoparticles and Ni-oxy species layer on Ni foams contribute significantly to the enhanced electro-oxidation of FA via the direct pathway, making it almost equal to the indirect pathway, particularly at low FA concentrations.

3.
Materials (Basel) ; 16(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37687616

ABSTRACT

This study focuses on fabricating cobalt particles deposited on graphitic carbon nitride (Co/gCN) using annealing, microwave-assisted and hydrothermal syntheses, and their employment in hydrogen and oxygen evolution (HER and OER) reactions. Composition, surface morphology, and structure were examined using inductively coupled plasma optical emission spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The performance of Co-modified gCN composites for the HER and OER were investigated in an alkaline media (1 M KOH). Compared to the metal-free gCN, the modification of gCN with Co enhances the electrocatalytic activity towards the HER and OER. Additionally, thermal annealing of both Co(NO3)2 and melamine at 520 °C for 4 h results in the preparation of an effective bifunctional Co3O4/gCN catalyst for the HER with the lower Eonset of -0.24 V, a small overpotential of -294.1 mV at 10 mA cm-2, and a low Tafel slope of -29.6 mV dec-1 in a 1.0 M KOH solution and for the OER with the onset overpotential of 286.2 mV and overpotential of 422.3 mV to achieve a current density of 10 mA cm-2 with the Tafel slope of 72.8 mV dec-1.

4.
Materials (Basel) ; 16(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37687695

ABSTRACT

Nitrogen-doped activated carbons with controlled micro- and mesoporosity were obtained from wood and wastes via chemical processing using pre-treatment (pyrolysis at 500 °C and hydrothermally carbonization at 250 °C) and evaluated as oxygen reduction catalysts for further application in fuel cells. The elemental and chemical composition, structure and porosity, and types of nitrogen bonds of obtained catalyst materials were studied. The catalytic activity was evaluated in an alkaline medium using the rotating disk electrode method. It was shown that an increase in the volume of mesopores in the porous structure of a carbon catalyst promotes the diffusion of reagents and the reactions proceed more efficiently. The competitiveness of the obtained carbon materials compared to Pt/C for the reaction of catalytic oxygen reduction is shown.

5.
Materials (Basel) ; 14(24)2021 Dec 12.
Article in English | MEDLINE | ID: mdl-34947262

ABSTRACT

In this study, sodium borohydride oxidation has been investigated on the platinum nanoparticles modified copper/titanium catalysts (PtNPsCu/Ti), which were fabricated by employing the electroless copper plating and galvanic displacement technique. ICP-OES, XRD, FESEM, and EDX have been used to characterize PtNPsCu/Ti catalysts' composition, structure, and surface morphology. The oxidation of sodium borohydride was examined on the PtNPsCu/Ti catalysts using cyclic voltammetry and chrono-techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...