Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(1)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36671649

ABSTRACT

Bone adhesives offer distinct advantages over the use of screws to attached internal fixation plates (IFPs). As the chemical composition of bone is similar to dentine, it is possible that the types of monomers used to make dentine adhesives could be utilised to affix IFPs to bone. The ability to attach a bio-resorbable IFP to porcine bone was assessed for the monomer 10-methacryloyloxydecyl dihydrogen phosphate (MDP), used either as a homopolymer or a copolymer with urethane dimethacrylate (MDP + U). Additionally, the addition of a priming step (MDP + U + P) was evaluated. The chemical interactions of the monomers with bone were assessed using XRD and imaged using TEM, revealing the formation of nano-layered structures with the MDP primer, something we believe has not been reported on bone. In a 6-week artificial aging study both MDP + U and MDP + U + P demonstrated adequate shear bond strength to affix bio-resorbable IFPs. The cytotoxicity profiles of the adhesive formulations were determined using indirect and direct contact with MC3T3 cells, with indirect conditions suggesting the MDP + U + P is as cytocompatible as the resorbable IFP. The findings of this study suggest our newly developed adhesive has the potential to be used as a bone adhesive to affix bioresorbable IFPs.

2.
Mater Sci Eng C Mater Biol Appl ; 76: 190-195, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28482516

ABSTRACT

This paper reports the first study on centrifugal spinning of PHBV fibres. Fibres were spun from solution using a range of polymer concentrations, spin speeds and spinneret to collector distances. A PHBV polymer concentration of 25% w/v spun at 9000rmin-1 produced the highest quality fibres, with fibre diameters predominantly in the 0.5-3µm range. The rate at which fibre could be produced at the 9000rmin-1 spin speed and with a spinneret to collector distance of 39.2cm was equivalent to 11km of fibre per minute per needle. Average fibre strengths of 3MPa were achieved, together with average moduli of 100MPa, indicating that the fibres had higher strength but lower stiffness than electrospun PHBV. The productivity and mechanical properties achieved, together with the excellent biocompatibility of PHBV, means that these fibres have potential for application in a range of biomedical applications.


Subject(s)
Nanofibers , Polymers
3.
Mater Sci Eng C Mater Biol Appl ; 69: 470-7, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27612737

ABSTRACT

We synthesised methacrylate-terminated PLGA (HT-PLGA, 85:15 LA:GA, 169kDa), for potential use as an adhesively attached craniomaxillofacial fracture fixation plate. The in vitro degradation of molecular weight, pH and flexural modulus were measured over 6weeks storage in PBS at 37°C, with commercially available high (225kDa, H-PLGA) and low (116kDa, L-PLGA) molecular weight 85:15 PLGAs used as comparators. Molecular weights of the materials reduced over 6weeks, HT-PLGA by 48%, H-PLGA by 23% and L-PLGA by 81%. HT-PLGA and H-PLGA exhibited a near constant pH (7.35) and had average flexural moduli in excess of 6GPa when produced, similar to that of the mandible. After 1week storage both exhibited a significant reduction in average modulus, however, from weeks 1-6 no further significant changes were observed, the average modulus never dropped significantly below 5.5GPa. In contrast, the L-PLGA caused a pH drop to below 7.3 by week 6 and an average modulus drop to 0.6 from an initial 4.6GPa. Cell culture using rat bone marrow stromal cells, revealed all materials were cytocompatible and exhibited no osteogenic potential. We conclude that our functionalised PLGA retains mechanical properties which are suitable for use in craniofacial fixation plates.


Subject(s)
Biocompatible Materials/chemistry , Bone Plates , Lactic Acid/chemistry , Methacrylates/chemistry , Polyglycolic Acid/chemistry , Animals , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Cell Survival/drug effects , Cells, Cultured , Elastic Modulus , Fracture Fixation, Internal , Hydrogen-Ion Concentration , Male , Maxillary Fractures/therapy , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Polylactic Acid-Polyglycolic Acid Copolymer , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...