Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 56(12): 2043-51, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18814890

ABSTRACT

We measured dissolved N(2)O, CH(4), O(2), NH(4)(+), NO(3)(-) and NO(2)(-) on 7 transects along the polluted Adyar River-estuary, SE India and estimated N(2)O and CH(4) emissions using a gas exchange relation and a floating chamber. High NO(2)(-) implied some nitrification of a large anthropogenic NH(4)(+) pool. In the lower catchment CH(4) was maximal (6.3+/-4.3 x 10(4)nM), exceeding the ebullition threshold, whereas strong undersaturation of N(2)O and O(2) implied intense denitrification. Emissions fluxes for the whole Adyar system approximately 2.5 x 10(8) g CH(4)yr(-1) and approximately 2.4 x 10(6)gN(2)O yr(-1) estimated with a gas exchange relation and approximately 2 x 10(9) g CH(4)yr(-1) derived with a floating chamber illustrate the importance of CH(4) ebullition. An equivalent CO(2) flux approximately 1-10 x 10(10)gy r(-1) derived using global warming potentials is equivalent to total Chennai motor vehicle CO(2) emissions in one month. Studies such as this may inform more effective waste management and future compliance with international emissions agreements.


Subject(s)
Methane/chemistry , Nitrous Oxide/chemistry , Rivers/chemistry , Water Pollutants, Chemical/chemistry , Environmental Monitoring , India , Nitrogen/chemistry , Oceans and Seas , Oxygen/chemistry
2.
Mar Pollut Bull ; 54(2): 164-72, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17045304

ABSTRACT

We describe a dynamic model developed from a commercially available modeling package (ECoS-III) to simulate estuarine dissolved inorganic nitrogen (DIN) dynamics, and consequent N(2)O production and atmospheric flux on the timescale of tidal cycles. Simulated model state variables were NH(4)(+), NO(3)(-) and N(2)O concentrations, and salinity. Model outputs were evaluated through comparison with summer field data for the Tyne estuary, UK. The model adequately reproduced the observed axial profiles of NH(4)(+), NO(3)(-) and N(2)O concentrations. Nitrification was shown to be the dominant N(2)O source and estimates of the ratios nitrification to DIN load and N(2)O emission to DIN load are considerably lower than the corresponding values adopted in global scale models of estuarine N(2)O emissions based on DIN transformations. Hence our results are consistent with the requirement imposed by atmospheric N(2)O growth rate constraints that the amount of atmospheric N(2)O arising from agriculturally related sources, including estuarine transformations of N, be revised downward.


Subject(s)
Computer Simulation , Marine Biology , Models, Chemical , Nitrous Oxide/chemistry , Seasons , Seawater/analysis , Sodium Chloride/analysis , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...