Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37662196

ABSTRACT

Photoreception, a form of sensory experience, is essential for normal development of the mammalian visual system. Detecting photons during development is a prerequisite for visual system function - from vision's first synapse at the cone pedicle and maturation of retinal vascular networks, to transcriptional establishment and maturation of cell types within the visual cortex. Consistent with this theme, we find that the lighting environment regulates developmental rod photoreceptor apoptosis via OPN4-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs). Using a combination of genetics, sensory environment manipulations, and computational approaches, we establish a molecular pathway in which light-dependent glutamate release from ipRGCs is detected via a transiently expressed kainate receptor (GRIK3) in immature rods localized to the inner retina. Communication between ipRGCs and nascent inner retinal rods appears to be mediated by unusual hybrid neurites projecting from ipRGCs that sense light before eye-opening. These structures, previously referred to as outer retinal dendrites (ORDs), span the ipRGC-immature rod distance over the first postnatal week and contain the machinery for sensory detection (melanopsin, OPN4) and axonal/anterograde neurotransmitter release (Synaptophysin, and VGLUT2). Histological and computational assessment of human mid-gestation development reveal conservation of several hallmarks of an ipRGC-to-immature rod pathway, including displaced immature rods, transient GRIK3 expression in the rod lineage, and the presence of ipRGCs with putative neurites projecting deep into the developing retina. Thus, this analysis defines a retinal retrograde signaling pathway that links the sensory environment to immature rods via ipRGC photoreceptors, allowing the visual system to adapt to distinct lighting environments priory to eye-opening.

2.
Annu Rev Vis Sci ; 9: 245-267, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37196422

ABSTRACT

We live on a planet that is bathed in daily and seasonal sunlight cycles. In this context, terrestrial life forms have evolved mechanisms that directly harness light energy (plants) or decode light information for adaptive advantage. In animals, the main light sensors are a family of G protein-coupled receptors called opsins. Opsin function is best described for the visual sense. However, most animals also use opsins for extraocular light sensing for seasonal behavior and camouflage. While it has long been believed that mammals do not have an extraocular light sensing capacity, recent evidence suggests otherwise. Notably, encephalopsin (OPN3) and neuropsin (OPN5) are both known to mediate extraocular light sensing in mice. Examples of this mediation include photoentrainment of circadian clocks in skin (by OPN5) and acute light-dependent regulation of metabolic pathways (by OPN3 and OPN5). This review summarizes current findings in the expanding field of extraocular photoreception and their relevance for human physiology.


Subject(s)
Opsins , Rod Opsins , Mice , Humans , Animals , Opsins/physiology , Skin/metabolism , Mammals , Membrane Proteins/metabolism
3.
eNeuro ; 9(5)2022.
Article in English | MEDLINE | ID: mdl-36041828

ABSTRACT

Opsin-3 (Opn3, encephalopsin) was the first nonvisual opsin gene discovered in mammals. Since then, several Opn3 functions have been described, and in two cases (adipose tissue, smooth muscle) light sensing activity is implicated. In addition to peripheral tissues, Opn3 is robustly expressed within the central nervous system, for which it derives its name. Despite this expression, no studies have investigated developmental or adult CNS consequences of Opn3 loss-of-function. Here, the behavioral consequences of mice deficient in Opn3 were investigated. Opn3-deficient mice perform comparably to wild-type mice in measures of motor coordination, socialization, anxiety-like behavior, and various aspects of learning and memory. However, Opn3-deficient mice have an attenuated acoustic startle reflex (ASR) relative to littermates. This deficit is not because of changes in hearing sensitivity, although Opn3 was shown to be expressed in auditory and vestibular structures, including cochlear outer hair cells. Interestingly, the ASR was not acutely light-dependent and did not vary between daytime and nighttime trials, despite known functions of Opn3 in photoreception and circadian gene amplitude. Together, these results demonstrate the first role of Opn3 on behavior, although the role of this opsin in the CNS remains largely elusive.


Subject(s)
Reflex, Startle , Rod Opsins , Acoustic Stimulation , Animals , Mammals/metabolism , Mice , Opsins , Rod Opsins/genetics , Rod Opsins/metabolism
4.
J Comp Neurol ; 530(8): 1247-1262, 2022 06.
Article in English | MEDLINE | ID: mdl-34743323

ABSTRACT

Obtaining a parts list of the sensory components of the retina is vital to understand the effects of light in behavior, health, and disease. Rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs) are the best described photoreceptors in the mammalian retina, but recent functional roles have been proposed for retinal neuropsin (Opn5)-an atypical opsin. However, little is known about the pattern of Opn5 expression in the retina. Using cre (Opn5cre ) and cre-dependent reporters, we uncover patterns of Opn5 expression and find that Opn5 is restricted to retinal ganglion cells (RGCs). Opn5-RGCs are nonhomogenously distributed through the retina, with greater densities of cells located in the dorsotemporal quadrant. In addition to the local topology of these cells, using cre-dependent AAV viral tracing, we surveyed their central targets and found that they are biased towards image-forming and image-stabilizing regions. Finally, molecular and electrophysiological profiling reveal that Opn5-RGCs comprise previously defined RGC types that respond optimally to edges and object-motion (F-mini-ONs, HD2, HD1, LEDs, ooDSRGCs, etc.). Together, these data describe the second collection of RGCs that express atypical opsins in the mouse, and expand the roles of image-forming cells in retinal physiology and function.


Subject(s)
Retina , Retinal Ganglion Cells , Animals , Mammals , Membrane Proteins/metabolism , Mice , Opsins/genetics , Opsins/metabolism , Retina/physiology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Ganglion Cells/physiology , Rod Opsins/metabolism
5.
eNeuro ; 8(5)2021.
Article in English | MEDLINE | ID: mdl-34417283

ABSTRACT

Opsin 3 (Opn3) is highly expressed in the adult brain, however, information for spatial and temporal expression patterns during embryogenesis is significantly lacking. Here, an Opn3-eGFP reporter mouse line was used to monitor cell body expression and axonal projections during embryonic and early postnatal to adult stages. By applying 2D and 3D fluorescence imaging techniques, we have identified the onset of Opn3 expression, which predominantly occurred during embryonic stages, in various structures during brain/head development. In addition, this study defines over twenty Opn3-eGFP-positive neural structures never reported before. Opn3-eGFP was first observed at E9.5 in neural regions, including the ganglia that will ultimately form the trigeminal, facial and vestibulocochlear cranial nerves (CNs). As development proceeds, expanded Opn3-eGFP expression coincided with the formation and maturation of critical components of the central and peripheral nervous systems (CNS, PNS), including various motor-sensory tracts, such as the dorsal column-medial lemniscus (DCML) sensory tract, and olfactory, acoustic, and optic tracts. The widespread, yet distinct, detection of Opn3-eGFP already at early embryonic stages suggests that Opn3 might play important functional roles in the developing brain and spinal cord to regulate multiple motor and sensory circuitry systems, including proprioception, nociception, ocular movement, and olfaction, as well as memory, mood, and emotion. This study presents a crucial blueprint from which to investigate autonomic and cognitive opsin-dependent neural development and resultant behaviors under physiological and pathophysiological conditions.


Subject(s)
Opsins , Rod Opsins , Animals , Embryo, Mammalian , Embryonic Development , Mice , Spinal Cord
6.
Front Neurosci ; 15: 665762, 2021.
Article in English | MEDLINE | ID: mdl-34017237

ABSTRACT

The preoptic area of the hypothalamus is a homeostatic control center. The heterogeneous neurons in this nucleus function to regulate the sleep/wake cycle, reproduction, thirst and hydration, as well as thermogenesis and other metabolic responses. Several recent studies have analyzed preoptic neuronal populations and demonstrated neuronal subtype-specific roles in suppression of thermogenesis. These studies showed similar thermogenesis responses to chemogenetic modulation, and similar synaptic tracing patterns for neurons that were responsive to cold, to inflammatory stimuli, and to violet light. A reanalysis of single-cell/nucleus RNA-sequencing datasets of the preoptic nucleus indicate that these studies have converged on a common neuronal population that when activated, are sufficient to suppress thermogenesis. Expanding on a previous name for these neurons (Q neurons, which reflect their ability to promote quiescence and expression of Qrfp), we propose a new name: QPLOT neurons, to reflect numerous molecular markers of this population and to capture its broader roles in metabolic regulation. Here, we summarize previous findings on this population and present a unified description of QPLOT neurons, the excitatory preoptic neuronal population that integrate a variety of thermal, metabolic, hormonal and environmental stimuli in order to regulate metabolism and thermogenesis.

7.
J Biol Rhythms ; 36(2): 109-126, 2021 04.
Article in English | MEDLINE | ID: mdl-33765865

ABSTRACT

Animals have evolved light-sensitive G protein-coupled receptors, known as opsins, to detect coherent and ambient light for visual and nonvisual functions. These opsins have evolved to satisfy the particular lighting niches of the organisms that express them. While many unique patterns of evolution have been identified in mammals for rod and cone opsins, far less is known about the atypical mammalian opsins. Using genomic data from over 400 mammalian species from 22 orders, unique patterns of evolution for each mammalian opsins were identified, including photoisomerases, RGR-opsin (RGR) and peropsin (RRH), as well as atypical opsins, encephalopsin (OPN3), melanopsin (OPN4), and neuropsin (OPN5). The results demonstrate that OPN5 and rhodopsin show extreme conservation across all mammalian lineages. The cone opsins, SWS1 and LWS, and the nonvisual opsins, OPN3 and RRH, demonstrate a moderate degree of sequence conservation relative to other opsins, with some instances of lineage-specific gene loss. Finally, the photoisomerase, RGR, and the best-studied atypical opsin, OPN4, have high sequence diversity within mammals. These conservation patterns are maintained in human populations. Importantly, all mammalian opsins retain key amino acid residues important for conjugation to retinal-based chromophores, permitting light sensitivity. These patterns of evolution are discussed along with known functions of each atypical opsin, such as in circadian or metabolic physiology, to provide insight into the observed patterns of evolutionary constraint.


Subject(s)
Evolution, Molecular , Mammals/metabolism , Opsins/metabolism , Opsins/radiation effects , Animals , Circadian Rhythm/radiation effects , Conserved Sequence , Humans , Mice , Opsins/chemistry , Opsins/genetics , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/radiation effects , Retina/metabolism , Retina/radiation effects , Rhodopsin/chemistry , Rhodopsin/genetics , Rhodopsin/metabolism , Rhodopsin/radiation effects
8.
Am J Respir Cell Mol Biol ; 64(1): 59-68, 2021 01.
Article in English | MEDLINE | ID: mdl-33058732

ABSTRACT

Recently, we characterized blue light-mediated relaxation (photorelaxation) of airway smooth muscle (ASM) and implicated the involvement of opsin 3 (OPN3), an atypical opsin. In the present study, we characterized the cellular signaling mechanisms of photorelaxation. We confirmed the functional role of OPN3 in blue light photorelaxation using trachea from OPN3 null mice (maximal relaxation 52 ± 13% compared with wild-type mice 90 ± 4.3%, P < 0.05). We then demonstrated colocalization of OPN3 and Gαs using co-IP and proximity ligation assays in primary human ASM cells, which was further supported by an increase in cAMP in mouse trachea treated with blue light compared with dark controls (23 ± 3.6 vs. 14 ± 2.6 pmol cAMP/ring, P < 0.05). Downstream PKA (protein kinase A) involvement was shown by inhibiting photorelaxation using Rp-cAMPS (P < 0.0001). Moreover, we observed converging mechanisms of desensitization by chronic ß2-agonist exposure in mouse trachea and correlated this finding with colocalization of OPN3 and GRK2 (G protein receptor kinase) in primary human ASM cells. Finally, an overexpression model of OPN1LW (a red light photoreceptor in the same opsin family) in human ASM cells showed an increase in intracellular cAMP levels following red light exposure compared with nontransfected cells (48 ± 13 vs. 13 ± 2.1 pmol cAMP/mg protein, P < 0.01), suggesting a conserved photorelaxation mechanism for wavelengths of light that are more tissue penetrant. Together, these results demonstrate that blue light photorelaxation in ASM is mediated by the OPN3 receptor interacting with Gαs, which increases cAMP levels, activating PKA and modulated by GRK2.


Subject(s)
G-Protein-Coupled Receptor Kinase 2/metabolism , Muscle Relaxation/physiology , Muscle, Smooth/metabolism , Myocytes, Smooth Muscle/metabolism , Rod Opsins/metabolism , Trachea/metabolism , Animals , Cells, Cultured , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Opsins/metabolism , Signal Transduction/physiology
9.
Nature ; 585(7825): 420-425, 2020 09.
Article in English | MEDLINE | ID: mdl-32879486

ABSTRACT

The opsin family of G-protein-coupled receptors are used as light detectors in animals. Opsin 5 (also known as neuropsin or OPN5) is a highly conserved opsin that is sensitive to visible violet light1,2. In mice, OPN5 is a known photoreceptor in the retina3 and skin4 but is also expressed in the hypothalamic preoptic area (POA)5. Here we describe a light-sensing pathway in which POA neurons that express Opn5 regulate thermogenesis in brown adipose tissue (BAT). We show that Opn5 is expressed in glutamatergic warm-sensing POA neurons that receive synaptic input from several thermoregulatory nuclei. We further show that Opn5 POA neurons project to BAT and decrease its activity under chemogenetic stimulation. Opn5-null mice show overactive BAT, increased body temperature, and exaggerated thermogenesis when cold-challenged. Moreover, violet photostimulation during cold exposure acutely suppresses BAT temperature in wild-type mice but not in Opn5-null mice. Direct measurements of intracellular cAMP ex vivo show that Opn5 POA neurons increase cAMP when stimulated with violet light. This analysis thus identifies a violet light-sensitive deep brain photoreceptor that normally suppresses BAT thermogenesis.


Subject(s)
Color , Light , Membrane Proteins/metabolism , Neurons/metabolism , Neurons/radiation effects , Opsins/metabolism , Preoptic Area/cytology , Thermogenesis/radiation effects , Adipose Tissue, Brown/innervation , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/radiation effects , Animals , Body Temperature , Cold Temperature , Cyclic AMP/metabolism , Female , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Opsins/deficiency , Opsins/genetics , Thermogenesis/genetics
10.
Cell Rep ; 30(3): 672-686.e8, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31968245

ABSTRACT

Almost all life forms can detect and decode light information for adaptive advantage. Examples include the visual system, in which photoreceptor signals are processed into virtual images, and the circadian system, in which light entrains a physiological clock. Here we describe a light response pathway in mice that employs encephalopsin (OPN3, a 480 nm, blue-light-responsive opsin) to regulate the function of adipocytes. Germline null and adipocyte-specific conditional null mice show a light- and Opn3-dependent deficit in thermogenesis and become hypothermic upon cold exposure. We show that stimulating mouse adipocytes with blue light enhances the lipolysis response and, in particular, phosphorylation of hormone-sensitive lipase. This response is Opn3 dependent. These data establish a key mechanism in which light-dependent, local regulation of the lipolysis response in white adipocytes regulates energy metabolism.


Subject(s)
Adipocytes, Brown/metabolism , Adipocytes, Brown/radiation effects , Adipocytes, White/metabolism , Adipocytes, White/radiation effects , Light , Rod Opsins/metabolism , Thermogenesis/radiation effects , Animals , Cold Temperature , Energy Metabolism/radiation effects , Gene Expression Profiling , Lipolysis/radiation effects , Mice, Inbred C57BL , Phenotype , Photons , Thermogenesis/genetics
11.
Nat Cell Biol ; 21(4): 420-429, 2019 04.
Article in English | MEDLINE | ID: mdl-30936473

ABSTRACT

During mouse postnatal eye development, the embryonic hyaloid vascular network regresses from the vitreous as an adaption for high-acuity vision. This process occurs with precisely controlled timing. Here, we show that opsin 5 (OPN5; also known as neuropsin)-dependent retinal light responses regulate vascular development in the postnatal eye. In Opn5-null mice, hyaloid vessels regress precociously. We demonstrate that 380-nm light stimulation via OPN5 and VGAT (the vesicular GABA/glycine transporter) in retinal ganglion cells enhances the activity of inner retinal DAT (also known as SLC6A3; a dopamine reuptake transporter) and thus suppresses vitreal dopamine. In turn, dopamine acts directly on hyaloid vascular endothelial cells to suppress the activity of vascular endothelial growth factor receptor 2 (VEGFR2) and promote hyaloid vessel regression. With OPN5 loss of function, the vitreous dopamine level is elevated and results in premature hyaloid regression. These investigations identify violet light as a developmental timing cue that, via an OPN5-dopamine pathway, regulates optic axis clearance in preparation for visual function.


Subject(s)
Dopamine/metabolism , Eye/blood supply , Light , Membrane Proteins/metabolism , Opsins/metabolism , Animals , Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Dopamine Plasma Membrane Transport Proteins/chemistry , Dopamine Plasma Membrane Transport Proteins/metabolism , Endothelium, Vascular/metabolism , Eye/enzymology , Eye/growth & development , Eye/metabolism , Membrane Proteins/genetics , Mice , Mice, Knockout , Opsins/genetics , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/radiation effects , Threonine/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/physiology , Vitreous Body/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...