Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(22): 6651-6657, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38804328

ABSTRACT

Photovoltaic efficiency in solar cells is hindered by many unwanted effects. Radiative channels (emission of photons) sometimes mediated by nonradiative ones (emission of phonons) are principally responsible for the decrease in exciton population before charge separation can take place. One such mechanism is electron-hole recombination at surfaces or defects where the in-gap edge states serve as the nonradiative channels. In topological insulators (TIs), which are rarely explored from an optoelectronics standpoint, we show that their characteristic surface states constitute a nonradiative decay channel that can be exploited to generate a protected photovoltaic current. Focusing on two-dimensional TIs, and specifically for illustration purposes on a Bi(111) monolayer, we obtain the transition rates from the bulk excitons to the edge states. By breaking the appropriate symmetries of the system, one can induce an edge charge accumulation and edge currents under illumination, demonstrating the potential of TI nanoribbons for photovoltaics.

2.
J Chem Theory Comput ; 19(1): 333-348, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36480770

ABSTRACT

In this manuscript, we present a theoretical framework and its numerical implementation to simulate the out-of-equilibrium electron dynamics induced by the interaction of ultrashort laser pulses in condensed-matter systems. Our approach is based on evolving in real time the density matrix of the system in reciprocal space. It considers excitonic and nonperturbative light-matter interactions. We show some relevant examples that illustrate the efficiency and flexibility of the approach to describe realistic ultrafast spectroscopy experiments. Our approach is suitable for modeling the promising and emerging ultrafast studies at the attosecond time scale that aim at capturing the electron dynamics and the dynamical electron-electron correlations via X-ray absorption spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...