Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Br J Nutr ; 131(11): 1827-1840, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38410884

ABSTRACT

The purpose of this study was to investigate the effect of an egg white hydrolysate (EWH) to protect white adipose tissue damage from cardiometabolic changes induced by severe hypertension. Male Wistar rats were uninephrectomised and divided: SHAM (weekly subcutaneous vehicle (mineral oil + propylene glycol, 1:1)), SHAM + EWH (subcutaneous vehicle plus EWH via gavage, 1 g/kg per day), DOCA (deoxycorticosterone acetate diluted in vehicle subcutaneously weekly in subsequent doses of 20 mg/kg -1st week, 12 mg/kg - 2­3th week, and 6 mg/kg -4­8th week, respectively, plus 1 % NaCl and 0·2 % KCl in drinking water), and DOCA + EWH. Body weight gain, food and water intake, glucose and lipid metabolism were evaluated. Oxidative stress was assessed by biochemical assay and immunofluorescence for NOX-1, nuclear factor kappa B (NFκB), and caspase-3 in retroperitoneal white adipose tissue (rtWAT). Proinflammatory cytokines (IL-6 and 1ß), CD163+ macrophage infiltration, and immunohistochemistry for TNFα and uncoupling protein-1 were evaluated, as well as histological analysis on rtWAT. Glutathione peroxidase and reductase were also determined in plasma. EWH showed hypocholesterolemic, antioxidant, anti-inflammatory, and anti-apoptotic properties in the arterial hypertension DOCA-salt model. The results demonstrated the presence of functional changes in adipose tissue function by a decrease in macrophage infiltration and in the fluorescence intensity of NFκB, NOX-1, and caspase-3. A reduction of proinflammatory cytokines and restoration of antioxidant enzymatic activity and mitochondrial oxidative damage by reducing uncoupling protein-1 fluorescence intensity were also observed. EWH could be used as a potential alternative therapeutic strategy in the treatment of cardiometabolic complications associated with malignant secondary arterial hypertension.


Subject(s)
Adipose Tissue, White , Desoxycorticosterone Acetate , Egg White , Oxidative Stress , Rats, Wistar , Animals , Male , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Oxidative Stress/drug effects , Egg White/chemistry , Rats , Hypertension/metabolism , Hypertension/chemically induced , Protein Hydrolysates/pharmacology , Lipid Metabolism/drug effects , Uncoupling Protein 1/metabolism , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/drug effects
2.
Antioxidants (Basel) ; 12(6)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37372021

ABSTRACT

In recent years, quinoa has been postulated as an emerging crop for the production of functional foods. Quinoa has been used to obtain plant protein hydrolysates with in vitro biological activity. The aim of the present study was to evaluate the beneficial effect of red quinoa hydrolysate (QrH) on oxidative stress and cardiovascular health in an in vivo experimental model of hypertension (HTN) in the spontaneously hypertensive rat (SHR). The oral administration of QrH at 1000 mg/kg/day (QrHH) showed a significant reduction in SBP from baseline (-9.8 ± 4.5 mm Hg; p < 0.05) in SHR. The mechanical stimulation thresholds did not change during the study QrH groups, whereas in the case of SHR control and SHR vitamin C, a significant reduction was observed (p < 0.05). The SHR QrHH exhibited higher antioxidant capacity in the kidney than the other experimental groups (p < 0.05). The SHR QrHH group showed an increase in reduced glutathione levels in the liver compared to the SHR control group (p < 0.05). In relation to lipid peroxidation, SHR QrHH exhibited a significant decrease in plasma, kidney and heart malondialdehyde (MDA) values compared to the SHR control group (p < 0.05). The results obtained revealed the in vivo antioxidant effect of QrH and its ability to ameliorate HTN and its associated complications.

3.
Metabolites ; 12(12)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36557226

ABSTRACT

Aluminum (Al) is a non-essential metal omnipresent in human life and is considered an environmental toxicant. Al increases reactive oxygen production and triggers immune responses, contributing to chronic systemic inflammation development. Here, we have tested whether an egg white hydrolysate (EWH) with potential bioactive properties can protect against changes in reproductive function in rats exposed to long-term Al dietary levels at high and low doses. Male Wistar rats received orally: low aluminum level group-AlCl3 at 8.3 mg/kg b.w. for 60 days with or without EWH (1 g/kg/day); high aluminum level group-AlCl3 at 100 mg/kg b.w. for 42 days with or without EWH (1 g/kg/day). The co-administration of EWH prevented the increased Al deposition surrounding the germinative cells, reducing inflammation and oxidative stress in the reproductive organs. Furthermore, the daily supplementation with EWH maintained sperm production and sperm quality similar to those found in control animals, even after Al exposure at a high dietary contamination level. Altogether, our results suggest that EWH could be used as a protective agent against impairment in the reproductive system produced after long-term exposure to Al at low or high human dietary levels.

4.
Food Funct ; 13(11): 5996-6007, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35575219

ABSTRACT

Aim: To investigate the effects of egg white hydrolysate (EWH) on the lipid and glycemic metabolism disruption in the white adipose tissue (WAT) dysfunction induced by mercury (Hg). Experimental: Wistar rats were treated for 60 days: control (saline, intramuscular - i.m.); hydrolysate (EWH, gavage, 1 g kg-1 day-1); mercury (HgCl2, i.m., 1st dose 4.6 µg kg-1, subsequent doses 0.07 µg kg-1 day-1) and hydrolysate-mercury (EWH-HgCl2). Hg level and histological analyses were performed in epididymal WAT (eWAT), pancreas and liver. GRP78, CHOP, PPARα, PPARγ, leptin, adiponectin, and CD11 mRNA expressions were analyzed in eWAT. The plasma lipid profile, glucose, and insulin levels were measured. Antioxidant status was also evaluated in the plasma and liver. Results: EWH intake prevented the reduced eWAT weight, adipocyte size, insulin levels, and antioxidant defenses and the increased glucose and triglyceride levels induced by Hg exposure; hepatic glutathione levels were higher in rats co-treated with EWH. The increased mRNA expression of CHOP, PPARα, and leptin induced by Hg was reduced in co-treated rats. EWH did not modify the elevated mRNA expression of GRP78, PPARγ and adiponectin in Hg-treated rats. Increased levels of Hg were found in the liver; the co-treatment did not alter this parameter. EWH prevented the morphological and metabolic disorder induced by Hg, by improving antioxidant defenses, inactivating pro-apoptotic pathways and normalizing the mRNA expression of PPARs and adipokines. Its effects enabled an increase in insulin levels and a normal balance between the fat storage and expenditure mechanisms in WAT. Conclusions: EWH may have potential benefits in the prevention and management of Hg-related metabolic disorders.


Subject(s)
Insulins , Mercury , Adiponectin/genetics , Adiponectin/metabolism , Adipose Tissue , Adipose Tissue, White/metabolism , Animals , Antioxidants/pharmacology , Egg White , Glucose/metabolism , Insulins/metabolism , Insulins/pharmacology , Leptin/metabolism , Lipids/pharmacology , Mercury/metabolism , Mercury/pharmacology , PPAR alpha/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar
5.
Toxicology ; 418: 41-50, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30807803

ABSTRACT

INTRODUCTION: The toxic effects of mercury (Hg) are involved in homeostasis of energy systems such as lipid and glucose metabolism, and white adipose tissue dysfunction is considered as a central mechanism leading to metabolic disorders. OBJECTIVE: The aim of this study was to determine the effects of chronic inorganic Hg exposure at low doses on the lipid and glycemic metabolism. METHODS: Male Wistar rats were divided into two groups and treated for 60 days with: saline solution, i.m. (Untreated) and mercury chloride, i.m. - 1st dose 4.6 µg/kg, subsequent doses 0.07 µg/kg/day - (Mercury). Histological analyses, Hg levels measurement and GRP78, CHOP, PPARα, PPARγ, leptin, adiponectin and CD11 mRNA expressions were performed in epididymal white adipose tissue (eWAT). Glucose, triglycerides, total cholesterol and insulin plasma levels were also measured. RESULTS: Hg exposure reduced the absolute and relative eWAT weights, adipocyte size, plasma insulin levels, glucose tolerance, antioxidant defenses and increased plasma glucose and triglyceride levels. In addition, CHOP, GRP78, PPARα, PPARγ, leptin and adiponectin mRNA expressions were increased in Hg-treated animals. No differences in Hg concentration were found in eWAT between the untreated and Hg groups. These results suggest that the reduction in adipocyte size is related to the impaired antioxidant defenses, endoplasmic reticulum (ER) stress, the disrupted PPARs and adipokines mRNA expression induced by the metal in eWAT. These disturbances possibly induced a decrease in circulating insulin levels, an imbalance between lipolysis and lipogenesis mechanisms in eWAT, with an increase in fatty acids mobilization, a reduction in glucose uptake and an activation of pro-apoptotic pathways, leading to hyperglycemia and hyperlipidemia. CONCLUSIONS: Hg is a powerful environmental WAT disruptor that influences signaling events and impairs metabolic activity and hormonal balance of adipocytes.


Subject(s)
Adipocytes, White/drug effects , Adipose Tissue, White/drug effects , Cell Plasticity/drug effects , Energy Metabolism/drug effects , Mercuric Chloride/toxicity , Adipocytes, White/metabolism , Adipocytes, White/pathology , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Animals , Apoptosis/drug effects , Blood Glucose/metabolism , Energy Metabolism/genetics , Gene Expression Regulation , Insulin/blood , Lipids/blood , Lipogenesis/drug effects , Lipolysis/drug effects , Male , Rats, Wistar , Signal Transduction
6.
Reprod Toxicol ; 73: 128-141, 2017 10.
Article in English | MEDLINE | ID: mdl-28823769

ABSTRACT

Concerns about environmental aluminum (Al) and reproductive health have been raised. We investigated the effects of Al exposure at a human relevant dietary level and a high level exposure to Al. Experiment 1 (Lower level) rats were treated orally for 60 days: a) controls - ultrapure water; b) aluminum at 1.5mg/kg bw/day and c) aluminum at 8.3mg/kg bw/day. Experiment 2 (High level) rats were treated for 42 days: a) controls - ultrapure water; b) aluminum at 100mg/kg bw/day. Al decreased sperm count, daily sperm production, sperm motility, normal morphological sperm, impaired testis histology; increased oxidative stress in reproductive organs and inflammation in testis. Our study shows the specific presence of Al in the germinative cells and, that low concentrations of Al in testes (3.35µg/g) are sufficient to impair spermatogenesis and sperm quality. Our findings provide a better understanding of the reproductive health risk of Al.


Subject(s)
Aluminum/toxicity , Spermatozoa/drug effects , Animals , Diet , Epididymis/drug effects , Epididymis/pathology , Humans , Lipid Peroxidation/drug effects , Male , Rats, Wistar , Reactive Oxygen Species/metabolism , Sperm Count , Sperm Motility/drug effects , Spermatogenesis/drug effects , Spermatozoa/abnormalities , Spermatozoa/physiology , Testis/drug effects , Testis/pathology
7.
Food Chem Toxicol ; 100: 253-264, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28043836

ABSTRACT

Oxidative stress in known to contribute to the male reproductive dysfunction induced by mercury (Hg). Our study tested the hypothesis that the egg white hydrolysate (EWH), a potent antioxidant in vitro, is able to prevent the effects of prolonged Hg exposure on male reproductive system in rats. For this, rats were treated for 60 days with: a) Untreated - saline solution (i.m.); b) Hydrolysate - EWH (1 g/kg/day, gavage); c) Mercury - HgCl2 (1st dose 4.6 µg/kg, subsequent doses 0.07 µg/kg/day, i.m.); d) Hydrolysate-Mercury. At the end of the treatment, sperm motility, count and morphological studies were performed; Reactive Oxygen Species (ROS) levels, lipid peroxidation, antioxidant capacity, histological and immunohistochemical assays on testis and epididymis were also carried out. As results, HgCl2-treatment decreased sperm number, increased sperm transit time in epididymis and impaired sperm morphology. However, these harmful effects were prevented by EWH. HgCl2-treatment also increased ROS levels, lipid peroxidation and antioxidant capacity in testis and epididymis as well as promoted testicular inflammation and histological changes in epididymis. EWH improved histological and immunohistochemical alterations, probably due to its antioxidant property. In conclusion, the EWH could represent a powerful natural alternative to protect the male reproductive system against Hg-induced sperm toxicity.


Subject(s)
Antioxidants/metabolism , Egg White/chemistry , Inflammation/drug therapy , Mercury Poisoning/drug therapy , Mercury/toxicity , Peptide Fragments/pharmacology , Reproduction/drug effects , Animals , Body Weight/drug effects , Epididymis/drug effects , Inflammation/chemically induced , Inflammation/pathology , Male , Mercury Poisoning/etiology , Mercury Poisoning/pathology , Oxidative Stress/drug effects , Peptide Fragments/therapeutic use , Rats , Rats, Wistar , Sperm Count , Sperm Motility/drug effects , Spermatozoa/drug effects , Spermatozoa/pathology , Testis/drug effects , Testis/pathology
8.
Neurochem Int ; 101: 30-37, 2016 12.
Article in English | MEDLINE | ID: mdl-27732885

ABSTRACT

The study aimed to investigate whether the Egg White Hydrolysate (EWH) is able to prevent the recognition memory disorders associated with long-term Hg exposure in rats. For this, male Wistar rats were treated for 60 days with: a) Untreated: saline solution (i.m.); b) Hydrolysate: EWH (1 g/kg/day, gavage); c) Mercury: HgCl2 (1st dose 4.6 µg/kg, subsequent doses 0.07 µg/kg/day, i.m.); d) Hydrolysate-Mercury. Object recognition memory test was performed to verify Short (STM) and Long-Term Memory (LTM) and Open Field, Plus Maze and Tail Flick tests were performed as control for behavioural experiments. Reactive Oxygen Species (ROS) in the hippocampus were determined by the dichlorofluorescein diacetate (DCFH-DA) method, malondialdehyde (MDA) levels by TBARS, antioxidant power by FRAP assay and total Hg concentration by atomic fluorescence spectrometry. We confirm that the STM and LTM were impaired in adult rats exposed to Hg at low concentrations, which may be related to the increased metal deposition, ROS production and subsequent oxidative damage in the hippocampus. In addition, we demonstrated for the first time that EWH treatment is able to prevent memory impairment induced by Hg exposure, reducing Hg content and ROS production in the hippocampus. In conclusion, EWH prevents memory impairments induced by chronic exposure to low doses of Hg. These findings may represent a good public health strategy since they indicate that EWH is a promising candidate as a new natural therapy for heavy metal intoxication.


Subject(s)
Antioxidants/pharmacology , Lipid Peroxidation/drug effects , Memory Disorders/drug therapy , Mercury/pharmacology , Protein Hydrolysates/metabolism , Animals , Egg White , Male , Oxidative Stress/drug effects , Rats, Wistar , Reactive Oxygen Species/pharmacology
9.
Brain Res ; 1646: 482-489, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27350078

ABSTRACT

This study aims to investigate whether the egg white hydrolysate (EWH) acts on the neuropathic disorders associated with long-term Mercury (Hg) exposure in rats. 8- week-old male Wistar rats were treated for 60 days with: a) Control - saline solution (i.m.); b) Mercury - HgCl2 (1st dose 4.6µg/kg, subsequent doses 0.07µg/kg/day, i.m.); c) Hydrolysate - EWH (1g/kg/day, gavage); d) Mercury and Hydrolysate. Mechanical allodynia was assessed using Von Frey Hairs test; heat hyperalgesia by the plantar test; catalepsy by a modification of the "ring test" and spontaneous locomotor activity by a photocell activity chambers. Analyses were performed at 0, 30 and 60 days of treatment. Brain and plasma MDA, plasma NPSH and TNF-α determination and skin immunohistochemistry were performed at 60 days. Hg induced a reduction in mechanical sensitivity threshold at 30 and 60 days and in thermal sensitivity threshold at 60 days. At the end of treatment catalepsy was developed, but there was not significant alteration in spontaneous locomotor activity. Hg also increased brain and plasma MDA, plasma NPSH and TNF-α levels and the number of Merkel cell-neurite complex in the skin. EWH prevented the development of mechanical allodynia, thermal hyperalgesia and catalepsy induced by Hg and the increase in MDA concentration in brain and plasma and in the number of Merkel cell-neurite complex in the skin. In conclusion, EWH promotes neuroprotection against the toxic effects caused by Hg, demonstrating a beneficial therapeutic potential.


Subject(s)
Mercury/toxicity , Neuroprotection/drug effects , Neuroprotective Agents/administration & dosage , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/complications , Protein Hydrolysates/administration & dosage , Animals , Brain/drug effects , Brain/metabolism , Catalepsy/chemically induced , Catalepsy/etiology , Catalepsy/prevention & control , Egg White/chemistry , Hyperalgesia/chemically induced , Hyperalgesia/etiology , Hyperalgesia/prevention & control , Lipid Peroxidation/drug effects , Locomotion/drug effects , Male , Merkel Cells/metabolism , Neurites/metabolism , Protein Hydrolysates/isolation & purification , Rats , Rats, Wistar , Skin/metabolism , Skin/pathology
10.
Rev Esp Enferm Dig ; 107(6): 366-73, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26031865

ABSTRACT

Diabetes mellitus (DM) is a group of diseases highly prevalent nowadays. Its different types produce very similar symptoms with acute and chronic complications. Amongst these, gastrointestinal (GI) dysmotility, associated with the development of neuropathy in the enteric nervous system (ENS) is recognized. The objective is to review the current knowledge on GI dysmotility and enteric neuropathy associated to diabetes mellitus. The different functional and structural alterations within the digestive tract in diabetic patients and animal models are described. Finally, the therapeutic and preventive strategies tested so far in the context of enteric diabetic neuropathy are briefly summarized.In conclusion, amongst the alterations described in DM, the loss of inhibitory intrinsic innervation of the gut is most remarkable. Different therapeutic and/or preventive strategies, including the use of insulin, nerve growth factor or antioxidants, as well as myenteric neuron transplantation, are proposed.


Subject(s)
Diabetic Neuropathies/etiology , Intestinal Pseudo-Obstruction/etiology , Diabetic Neuropathies/pathology , Diabetic Neuropathies/physiopathology , Diabetic Neuropathies/therapy , Gastrointestinal Tract/innervation , Gastrointestinal Tract/pathology , Gastrointestinal Tract/physiopathology , Humans , Intestinal Mucosa/innervation , Intestinal Mucosa/pathology , Intestinal Mucosa/physiopathology , Intestinal Pseudo-Obstruction/pathology , Intestinal Pseudo-Obstruction/physiopathology , Intestinal Pseudo-Obstruction/therapy
11.
Rev. esp. enferm. dig ; 107(6): 366-373, jun. 2015. ilus
Article in Spanish | IBECS | ID: ibc-141871

ABSTRACT

La diabetes mellitus (DM) es un conjunto de enfermedades de gran prevalencia en la actualidad. Sus diferentes variantes se caracterizan por producir síntomas muy semejantes con complicaciones agudas y crónicas. Entre estas se encuentra la dismotilidad gastrointestinal (GI) asociada al desarrollo de neuropatía en el sistema nervioso entérico (SNE). El objetivo de este artículo es revisar los conocimientos sobre la dismotilidad GI y la neuropatía entérica asociada a diabetes mellitus. Para ello se describen las diversas alteraciones funcionales y estructurales encontradas en el sistema digestivo tanto en el hombre como en diversos modelos animales de diabetes. Para finalizar, se hace un breve resumen de las estrategias de tratamiento y prevención de la neuropatía diabética entérica que se han considerado hasta la fecha. En conclusión, entre las alteraciones descritas en la DM destaca especialmente la pérdida de inervación intrínseca inhibidora. Como posibles estrategias terapéuticas y/o preventivas se propone desde el uso de insulina, el factor de crecimiento nervioso y antioxidantes hasta el trasplante de neuronas mientéricas


Diabetes mellitus (DM) is a group of diseases highly prevalent nowadays. Its different types produce very similar symptoms with acute and chronic complications. Amongst these, gastrointestinal (GI) dysmotility, associated with the development of neuropathy in the enteric nervous system (ENS) is recognized. The objective is to review the current knowledge on GI dysmotility and enteric neuropathy associated to diabetes mellitus. The different functional and structural alterations within the digestive tract in diabetic patients and animal models are described. Finally, the therapeutic and preventive strategies tested so far in the context of enteric diabetic neuropathy are briefly summarized. In conclusion, amongst the alterations described in DM, the loss of inhibitory intrinsic innervation of the gut is most remarkable. Different therapeutic and/or preventive strategies, including the use of insulin, nerve growth factor or antioxidants, as well as myenteric neuron transplantation, are proposed


Subject(s)
Animals , Rats , Esophageal Motility Disorders/metabolism , Esophageal Motility Disorders/pathology , Gastroparesis/complications , Gastroparesis/metabolism , Neurons/pathology , In Vitro Techniques/instrumentation , Diabetes Mellitus/blood , Diabetes Mellitus/genetics , Gastrointestinal Tract/abnormalities , Esophageal Motility Disorders/complications , Esophageal Motility Disorders/diagnosis , Gastroparesis/genetics , Gastroparesis/pathology , Neurons/metabolism , In Vitro Techniques/trends , Diabetes Mellitus/metabolism , Diabetes Mellitus/prevention & control , Gastrointestinal Tract/injuries
SELECTION OF CITATIONS
SEARCH DETAIL
...