Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 947: 174193, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914335

ABSTRACT

Gold mining not only introduces mercury (Hg) contamination to soils but also facilitates the mobilization of other toxic substances, including arsenic (As). This study assessed the total content, chemical species, and bioavailable fraction of As in surface soils impacted by mining residues during frequent flooding. Analysis of 207 soil samples across the floodplain region of La Mojana, Colombia, screened to 2 mm with polyethylene mesh, revealed significant correlations (p < 0.05) between inorganic As, the residual phase, sulphur (S), iron (Fe), manganese (Mn), and aluminum (Al), indicating associations with sulfides and oxyhydroxides of Fe and Mn. The origin of toxicity was linked to suspended materials transported by rivers during flooding in areas with intense mining activity. Sites with better oxidizing conditions exhibited a higher presence of phases associated with amorphous and crystalline oxides in non-flooded areas. Although the bioavailable fraction was minimal in flooded sites, reducing conditions facilitated As mobility, resulting in higher concentrations in deeper soil layers, particularly as As(III). The contamination factor (CF) ranged from 1.3 to 11.1, and the geochemical index (Igeo) ranged from -0.2 to 2.9, indicating a moderate to high As contamination level in soils. This poses potential health risks, considering the agricultural use of these soils.

2.
An Acad Bras Cienc ; 96(1): e20221111, 2024.
Article in English | MEDLINE | ID: mdl-38808810

ABSTRACT

In recent years, the use of pesticides has increased considerably for pest control and to improve agricultural production. The rural areas of several municipalities of department of Cordoba, north of Colombia, are highly dependent on agriculture. In this study, a questionnaire and field observations about pesticide use and genotoxic damage through the comet assay in peripheral blood lymphocytes of children who live near crop fields was evaluated. Damage Index for Comet Assay (DICA) of five children populations exposed to pesticides (mean of 94.73±53.95 for the municipality of Monteria, the higher damage in this study) were significantly Higher than control children population (mean of 7.56±7.39). Results showed the damage index in children exposed group was higher than in the control group. An inadequate management of pesticides, as well as incorrect disposal of toxic wastes was observed in the study zone.


Subject(s)
Agriculture , Comet Assay , DNA Damage , Environmental Exposure , Pesticides , Humans , Colombia , Child , Pesticides/adverse effects , Pesticides/toxicity , Male , Female , Environmental Exposure/adverse effects , DNA Damage/drug effects , Rural Population , Child, Preschool , Surveys and Questionnaires , Adolescent , Lymphocytes/drug effects , Case-Control Studies
3.
Environ Res ; 233: 116229, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37236386

ABSTRACT

Arsenic (As) is one of the most dangerous substances that can affect human health and long-term exposure to As in drinking water can even cause cancer. The objective of this study was to investigate the concentrations of total As in the blood of inhabitants of a Colombian region impacted by gold mining and to evaluate its genotoxic effect through DNA damage by means of the comet assay. Additionally, the concentration of As in the water consumed by the population as well as the mutagenic activity of drinking water (n = 34) in individuals were determined by hydride generator atomic absorption spectrometry and the Ames test, respectively. In the monitoring, the study population was made up of a group of 112 people, including inhabitants of four municipalities: Guaranda, Sucre, Majagual, and San Marcos from the Mojana region as the exposed group, and Montería as a control group. The results showed DNA damage related to the presence of As in blood (p < 0.05) in the exposed population, and blood As concentrations were above the maximum allowable limit of 1 µg/L established by the ATSDR. A mutagenic activity of the drinking water was observed, and regarding the concentrations of As in water, only one sample exceeded the maximum permissible value of 10 µg/L established by the WHO. The intake of water and/or food containing As is potentially generating DNA damage in the inhabitants of the Mojana region, which requires surveillance and control by health entities to mitigate these effects.


Subject(s)
Arsenic , Drinking Water , Water Pollutants, Chemical , Humans , Arsenic/toxicity , Arsenic/analysis , Gold/toxicity , Mutagens/toxicity , Drinking Water/analysis , Colombia , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , DNA Damage , Mining
4.
Toxics ; 9(11)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34822695

ABSTRACT

The Hg accumulation in different commercial varieties of Oryzasativa L. was evaluated in the region of La Mojana, Colombia, where rice cultivation has become the staple food of the population living in this area. The varieties studied were Fedearroz-473 (FA473), Fedearroz-2000 (FA2000), and Fedearroz-Mocari (FAM). Soil spiked at different Hg levels was evaluated, (130, 800, and 1500 µg kg-1) using a 32 factorial design that consisted of 3 (rice varieties) × 3 (Hg contents). The biomass, 1000-grain weight, and the accumulation of Hg in the roots, grains, and husks were determined. The highest biomass was found in the FA473 (308.76 ± 108.26 g), and the lowest was found in FAM (144.04 ± 26.45 g) in the 1500 µg kg-1 Hg soil in both cases. The weight per 1000-grains decreased significantly in the soil containing 800 µg of Hg kg-1. Hg accumulation in the organs of the evaluated varieties was higher in the roots, followed by in the husks and grains. The Hg in the rice grains of the evaluated varieties presented levels close to the permissible limit of the Chinese standard (20 µg Hg kg-1) in the evaluated soils and were only exceeded by FA473. Although in natural soil concentrations, the non-cancer health risk (HQ) from rice consumption was lower for FA473 and FAM; Hg enrichment in the soil of La Mojana region may endanger the health of future populations due to their high consumption of rice.

5.
MethodsX ; 8: 101281, 2021.
Article in English | MEDLINE | ID: mdl-34434801

ABSTRACT

The objective of this work is the validation and implementation of an analytical method for the determination of arsenic chemical species in rice grain samples using High-performance liquid chromatography coupled to a hydride generator with atomic fluorescence detector (HPLC-HG-AFS). The extraction protocol developed was based on HNO3 0.28 M (90 °C, 2 h), microwave-assisted. The results showed recovery percentages of arsenite (As (III)) (99-101%), arsenate (As (V)) (91-96%), dimethylarsinic acid (DMA) (92-102%) and monomethylarsonic acid (MMA) (94-97%). The precision of the method presented coefficients of variation lower than 7% and 8% for repeatability and reproducibility respectively. The detection limits were 2.5, 3.75, 7.5 and 4.0 µg kg-1 for As (III), As (V), DMA and MMA respectively. The proposed methodology is reliable for the quantification of As species, because they are conserved during the extraction.•The extraction protocol developed was based on Microwave-assisted acid extraction.•This methodology offers good sensitivity, precision, accuracy, detection and quantification limits.•It was successfully applied to determination of arsenic chemical species in rice grains.

6.
Article in English | MEDLINE | ID: mdl-32340229

ABSTRACT

This study assesses the potential human health risks posed by six heavy metals (Hg, As, Pb, Cd, Cu, and Zn) found in five of the most consumed fish species (Mugil incilis, Centropomus undecimalis, Cathorops mapale, Eugerres plumieri, and Elops smithi) collected by the riverine population living in Ciénaga Grande de Santa Marta (CGSM), the largest estuary in Colombia. Metal concentrations were low compared with those reported in other regions around the world and the maximum value established by international monitoring organizations. The estimation of the potential risk (HQ) indicated that Cu and Hg could generate negative effects in groups of women of childbearing age (WCA) and the remaining population (RP), because they exceeded their related reference doses, with HQ values > 1; however, Cu and Hg concentrations were not high in fish and EWI, MFW, or MeHgPSL values shows that there is no evidence of a potential health risk from MeHg exposure in the study population. Therefore, the recommendations are to establish continuous monitoring of heavy metals together with strategies that address the high fish consumption, as well as to implement mechanisms for the mitigation of contamination of the watershed, to ensure the safety of organisms in the ecosystem and human health, not only of populations who depend on aquatic resources in the area but also of those that market and consume these resources in the Colombian Caribbean.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adult , Animals , Caribbean Region , Child , China , Colombia , Ecosystem , Environmental Monitoring , Estuaries , Female , Fishes , Food Contamination , Humans , Metals, Heavy/toxicity , Risk Assessment , Water Pollutants, Chemical/toxicity
7.
Chemosphere ; 250: 126142, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32105852

ABSTRACT

In this study, we evaluated the phytoremediation ability of three different genotypes of cowpea (Vigna unguiculata L. Walp) grown on mercury-contaminated soils from gold mining areas. In particular we compared a native genotype with two commercial lines L-019 and L-042. The plants were cultivated in soils amended at different concentrations of Hg (i.e. 0.2, 1, 2, 5 and 8 mg kg-1). After three months exposure, we determined plant growth, seed production, and Hg accumulation in different plant tissues (root, leaf, seed and stem). Indices of soil-plant metal transfer such as translocation, bioconcentration and bioaccumulation factors were calculated. Results showed that the native variety presented the highest seed production (3.8 g), however the highest plant biomass (7.9 g) was observed in line L-019, both on Hg-contaminated soil of 1 mg kg-1. The different plant tissues differed in terms of Hg concentration (root > leaf > stem). In the highest treated soil, the line L-042 accumulates higher Hg in both roots and leaves, while line L-019 accumulates more metal in stems. In line L-019, Hg concentrations in the fruit showed significant differences being higher in the valves than in the seeds. The transfer factors were generally lower than 1 and indicates the low accumulation of Hg by cowpeas. The estimated daily Hg intake through cowpea consumption showed values far below the threshold of 0.57 µg kg-1 dw day-1 recommended by the World Health Organization. Our results show cowpea V. unguiculata as a good protein-rich food substitute of Hg-contaminated fish for populations living near gold mining sites.


Subject(s)
Mercury/metabolism , Soil Pollutants/metabolism , Vigna/metabolism , Animals , Bioaccumulation , Biodegradation, Environmental , Fishes , Gold , Mercury/analysis , Mining , Plant Leaves/chemistry , Plants , Soil , Soil Pollutants/analysis
8.
Sci Total Environ ; 664: 899-907, 2019 May 10.
Article in English | MEDLINE | ID: mdl-30769313

ABSTRACT

One of the most representative predator species in tropical ecosystems is caiman that can provide relevant information about the impact of mercury (Hg) associated with artisanal and small-scale gold mining. To evaluate the degree to which adverse effects are likely to occur in Caiman crocodilus, total Hg (THg) concentrations in different tissues and DNA damage in erythrocytes were determined. Samples of claws, scutes, and blood were taken from 65 specimens in sites impacted by upstream gold mining, and in a crocodile breeding center as control site, located in a floodplain in northern Colombia. In all the sites, the highest THg among tissues was in the following order: claws >> scutes > blood. High concentrations of THg were found in the different tissues of the specimens captured in areas impacted by mining activities, with mean values in claws (1100 ng/g ww), caudal scutes (490 ng/g ww), and blood (65 ng/g ww), and statistically significant differences compared to those of the control site (p < 0.05). THg in scutes from impacted sites are 15-fold higher than in control, whereas for claws and blood are 8 times higher, and a high significant correlation with THg was found in all the tissues. The comet assay reveals significant differences in the DNA damage in the exposed reptiles compared to the controls (p < 0.01). In sum, C. crocodilus from La Mojana floodplain presents a high ecological risk given its genotypic susceptibility to Hg levels present in its habitat, which could possibly influence vital functions such as reproduction of the species and the ecological niche that it represents within the ecosystem.


Subject(s)
Alligators and Crocodiles/physiology , Environmental Monitoring , Mercury/metabolism , Water Pollutants, Chemical/metabolism , Animals , Colombia , DNA Damage , Ecosystem , Gold , Mercury/analysis , Mercury/toxicity , Mining , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
9.
Mar Pollut Bull ; 120(1-2): 379-386, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28506428

ABSTRACT

The concentrations of polycyclic aromatic hydrocarbons and heavy metals were evaluated in shallow sediments, water, fish and seabird samples from the Cispata Bay, Colombia. The heavy metals concentrations in the sediment was in the following order: Cu>Pb>Hg>Cd. The heavy metal concentration was different (p<0.05) in juvenile and adult birds. High concentrations of mercury were registered in the seabird (10.19±4.99mgkg-1) and fish (0.67µgg-1) samples. The total concentration of polycyclic aromatic hydrocarbons ranged from 7.0-41ngg-1 in sediment, 0.03-0.34ngmL-1 in water samples, 53.24ngg-1 in fish, and 66ngg-1 in seabirds. The high concentrations of heavy metals in seabirds may be explained by their feeding habits. The presence of polycyclic aromatic hydrocarbons in the Cispata Bay may be due to hydrocarbon spills during oil transport at the nearby oil port.


Subject(s)
Metals, Heavy/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Animals , Bays , Birds , Colombia , Ecosystem , Environmental Monitoring , Fishes , Geologic Sediments
SELECTION OF CITATIONS
SEARCH DETAIL
...