Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 20(9): e202300744, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37515823

ABSTRACT

This study, it was aimed to examine the change in the antimicrobial effect of sea anemone Parazoanthus axinellae extract by forming its nanoflowers. A scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX) were expended to observe the morphologies of the Cu NFs that had been produced. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) techniques were expended to analyze the managing assemblies in P. axinellae extract, which perform an effective part in the synthesis routine, as well as the crystal assembly of NFs. P. axinellae extract mediated the HNFs (Hybrid nanoflowers) are at high, pure crystalline nature, flower shape with a crystallographic system at the nanoscale with mean crystallite size 21.9 nm using XRD, and average particle size ~10 nm by SEM. The broad absorption band at 2981-2915 cm-1 in the FT-IR spectra of anemone extract and Cu-anemone NFs represents the unique peak of hydroxy groups. In addition, Cu NFs were tested for their antibacterial properties. Cu NFs have been discovered to exhibit antibacterial properties. It is suggested that P. axinellae extract and various inorganic components be used to synthesize a variety of NFs and assess their suitability for usage in biomedical fields.


Subject(s)
Anthozoa , Nanostructures , Animals , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , X-Ray Diffraction
2.
IEEE Trans Nanobioscience ; 22(3): 523-528, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36269917

ABSTRACT

First time in this study, the antibacterial effects of Axinyssa digitata sponge extracts and Axinyssa digitata-based cupper hybrid nanoflowers (Cu hNFs) were evaluated. Herein, hybrid nanoflowers (Cu hNFs) were produced by combining Axinyssa digitata sponge extract with Cu2+ ions in Phosphate-buffered saline (PBS) (at pH 7.4) at room temperature for three days using green synthesis method. The shape and size of hNFs were evaluated using scanning electron microscope (SEM) images. Energy dispersive X-ray spectroscopy (EDX) mapping was used to determine the presence of Cu metals and other components. X-ray diffraction (XRD) is a non-destructive analysis method that was used to determine of the crystallographic properties of materials and the phases they contain. Fourier-transform infrared spectroscopy (FT-IR) peaks were used to discuss the presence of functional groups that played a key role in the synthesis. The Cu-hNFs had antimicrobial activity against selected microorganisms. This research is expected to provide knowledge on hNFs synthesis and antimicrobial activity application investigations using Axinyssa digitata rather than biomolecules obtained through costly and time-consuming methods.


Subject(s)
Anti-Bacterial Agents , Metal Nanoparticles , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , X-Ray Diffraction , Metal Nanoparticles/chemistry
3.
Molecules ; 26(11)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199488

ABSTRACT

In December 2020, the U.K. authorities reported to the World Health Organization (WHO) that a new COVID-19 variant, considered to be a variant under investigation from December 2020 (VUI-202012/01), was identified through viral genomic sequencing. Although several other mutants were previously reported, VUI-202012/01 proved to be about 70% more transmissible. Hence, the usefulness and effectiveness of the newly U.S. Food and Drug Administration (FDA)-approved COVID-19 vaccines against these new variants are doubtfully questioned. As a result of these unexpected mutants from COVID-19 and due to lack of time, much research interest is directed toward assessing secondary metabolites as potential candidates for developing lead pharmaceuticals. In this study, a marine-derived fungus Aspergillus terreus was investigated, affording two butenolide derivatives, butyrolactones I (1) and III (2), a meroterpenoid, terretonin (3), and 4-hydroxy-3-(3-methylbut-2-enyl)benzaldehyde (4). Chemical structures were unambiguously determined based on mass spectrometry and extensive 1D/2D NMR analyses experiments. Compounds (1-4) were assessed for their in vitro anti-inflammatory, antiallergic, and in silico COVID-19 main protease (Mpro) and elastase inhibitory activities. Among the tested compounds, only 1 revealed significant activities comparable to or even more potent than respective standard drugs, which makes butyrolactone I (1) a potential lead entity for developing a new remedy to treat and/or control the currently devastating and deadly effects of COVID-19 pandemic and elastase-related inflammatory complications.


Subject(s)
4-Butyrolactone/analogs & derivatives , Anti-Allergic Agents/chemistry , Anti-Inflammatory Agents/chemistry , Aspergillus/chemistry , SARS-CoV-2/enzymology , Viral Matrix Proteins/antagonists & inhibitors , 4-Butyrolactone/chemistry , 4-Butyrolactone/isolation & purification , 4-Butyrolactone/metabolism , Anti-Allergic Agents/metabolism , Anti-Inflammatory Agents/metabolism , Aspergillus/growth & development , Aspergillus/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Humans , Leukocyte Elastase/antagonists & inhibitors , Leukocyte Elastase/metabolism , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Docking Simulation , Neutrophils/enzymology , SARS-CoV-2/isolation & purification , Seawater/microbiology , Viral Matrix Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...