Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(3): e0248243, 2021.
Article in English | MEDLINE | ID: mdl-33720988

ABSTRACT

In this work, a SEIR-type mathematical model of the COVID-19 outbreak was developed that describes individuals in compartments by infection stage and age group. The model assumes a close well-mixed community with no migrations. Infection rates and clinical and epidemiological information govern the transitions between stages of the disease. The impact of specific interventions (including the availability of critical care) on the outbreak time course, the number of cases and the outcome of fatalities were evaluated. Data available from the COVID-19 outbreak from Spain as of mid-May 2020 was used. Key findings in our model simulation results indicate that (i) universal social isolation measures appear effective in reducing total fatalities only if they are strict and the number of daily interpersonal contacts is reduced to very low numbers; (ii) selective isolation of only the elderly (at higher fatality risk) appears almost as effective as universal isolation in reducing total fatalities but at a possible lower economic and social impact; (iii) an increase in the number of critical care capacity directly avoids fatalities; (iv) the use of personal protective equipment (PPE) appears to be effective to dramatically reduce total fatalities when adopted extensively and to a high degree; (v) extensive random testing of the population for more complete infection recognition (accompanied by subsequent self-isolation of infected aware individuals) can dramatically reduce the total fatalities only above a high percentage threshold that may not be practically feasible.


Subject(s)
COVID-19/pathology , Models, Theoretical , Age Factors , Awareness , COVID-19/epidemiology , COVID-19/virology , Disease Outbreaks , Humans , Quarantine , SARS-CoV-2/isolation & purification , Spain/epidemiology
2.
Extremophiles ; 18(4): 629-39, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24913901

ABSTRACT

Halotolerant and halophilic microorganisms have potential applications in a number of very relevant environmental and industrial bioprocesses, from wastewater treatment to production of value-added chemicals. While numerous microbial strains have been identified and studied in the literature, the number of those successfully used in industrial applications is comparatively small. Literature is abundant in terms of characterisation of specific strains under a microbiology perspective; however, there is a need for studies tackling the selection of strains for bioprocess applications. This review presents a database of over 200 halophilic and halotolerant prokaryote strains compiled from taxonomic microbiological resources and classified by trophic groups as well as by their salinity, pH and temperature tolerance and optimum ranges, all under a process development perspective. In addition to this database, complementary systematic approaches for the selection of suitable strains for a given trophic activity and environmental conditions are also presented. Both the database and the proposed selection approaches together constitute a general tool for process development that allows researchers to systematically search for strains capable of specific substrate degradations under specific conditions (pH, T, salinity). Many exiting established halotolerant and halophilic environmental and industrial bioprocesses appear to have been developed following strategies in line with the systematic approaches proposed here.


Subject(s)
Bacteria/genetics , Biotechnology/methods , Salt Tolerance , Bacteria/classification , Bacteria/metabolism , Biodegradation, Environmental , Biotransformation , Classification
SELECTION OF CITATIONS
SEARCH DETAIL
...