Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Environ Manage ; 62(6): 1007-1024, 2018 12.
Article in English | MEDLINE | ID: mdl-30171327

ABSTRACT

The persistence of freshwater degradation has necessitated the growth of an expansive stream and wetland restoration industry, yet restoration prioritization at broad spatial extents is still limited and ad-hoc restoration prevails. The River Basin Restoration Prioritization tool has been developed to incorporate vetted, distributed data models into a catchment scale restoration prioritization framework. Catchment baseline condition and potential improvement with restoration activity is calculated for all National Hydrography Dataset stream reaches and catchments in North Carolina and compared to other catchments within the river subbasin to assess where restoration efforts may best be focused. Hydrologic, water quality, and aquatic habitat quality conditions are assessed with peak flood flow, nitrogen and phosphorus loading, and aquatic species distribution models. The modular nature of the tool leaves ample opportunity for future incorporation of novel and improved datasets to better represent the holistic health of a watershed, and the nature of the datasets used herein allow this framework to be applied at much broader scales than North Carolina.


Subject(s)
Big Data , Conservation of Water Resources , Rivers/chemistry , Ecosystem , Environmental Monitoring , Hydrology , Nitrogen/analysis , North Carolina , Phosphorus/analysis , Water Quality , Wetlands
2.
Mol Ecol ; 27(9): 2215-2233, 2018 05.
Article in English | MEDLINE | ID: mdl-29633402

ABSTRACT

Identifying adaptive loci can provide insight into the mechanisms underlying local adaptation. Genotype-environment association (GEA) methods, which identify these loci based on correlations between genetic and environmental data, are particularly promising. Univariate methods have dominated GEA, despite the high dimensional nature of genotype and environment. Multivariate methods, which analyse many loci simultaneously, may be better suited to these data as they consider how sets of markers covary in response to environment. These methods may also be more effective at detecting adaptive processes that result in weak, multilocus signatures. Here, we evaluate four multivariate methods and five univariate and differentiation-based approaches, using published simulations of multilocus selection. We found that Random Forest performed poorly for GEA. Univariate GEAs performed better, but had low detection rates for loci under weak selection. Constrained ordinations, particularly redundancy analysis (RDA), showed a superior combination of low false-positive and high true-positive rates across all levels of selection. These results were robust across the demographic histories, sampling designs, sample sizes and weak population structure tested here. The value of combining detections from different methods was variable and depended on the study goals and knowledge of the drivers of selection. Re-analysis of genomic data from grey wolves highlighted the unique, covarying sets of adaptive loci that could be identified using RDA. Although additional testing is needed, this study indicates that RDA is an effective means of detecting adaptation, including signatures of weak, multilocus selection, providing a powerful tool for investigating the genetic basis of local adaptation.


Subject(s)
Genomics/methods , Genotype , Multivariate Analysis , Adaptation, Biological , Computer Simulation , Selection, Genetic
4.
Conserv Biol ; 30(1): 42-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26390368

ABSTRACT

Ecological systems often operate on time scales significantly longer or shorter than the time scales typical of human decision making, which causes substantial difficulty for conservation and management in socioecological systems. For example, invasive species may move faster than humans can diagnose problems and initiate solutions, and climate systems may exhibit long-term inertia and short-term fluctuations that obscure learning about the efficacy of management efforts in many ecological systems. We adopted a management-decision framework that distinguishes decision makers within public institutions from individual actors within the social system, calls attention to the ways socioecological systems respond to decision makers' actions, and notes institutional learning that accrues from observing these responses. We used this framework, along with insights from bedeviling conservation problems, to create a typology that identifies problematic time-scale mismatches occurring between individual decision makers in public institutions and between individual actors in the social or ecological system. We also considered solutions that involve modifying human perception and behavior at the individual level as a means of resolving these problematic mismatches. The potential solutions are derived from the behavioral economics and psychology literature on temporal challenges in decision making, such as the human tendency to discount future outcomes at irrationally high rates. These solutions range from framing environmental decisions to enhance the salience of long-term consequences, to using structured decision processes that make time scales of actions and consequences more explicit, to structural solutions aimed at altering the consequences of short-sighted behavior to make it less appealing. Additional application of these tools and long-term evaluation measures that assess not just behavioral changes but also associated changes in ecological systems are needed.


Subject(s)
Conservation of Natural Resources/methods , Decision Making , Environmental Policy , Time Factors
5.
PLoS One ; 10(5): e0127963, 2015.
Article in English | MEDLINE | ID: mdl-26011182

ABSTRACT

Our society faces the pressing challenge of increasing agricultural production while minimizing negative consequences on ecosystems and the global climate. Indonesia, which has pledged to reduce greenhouse gas (GHG) emissions from deforestation while doubling production of several major agricultural commodities, exemplifies this challenge. Here we focus on palm oil, the world's most abundant vegetable oil and a commodity that has contributed significantly to Indonesia's economy. Most oil palm expansion in the country has occurred at the expense of forests, resulting in significant GHG emissions. We examine the extent to which land management policies can resolve the apparently conflicting goals of oil palm expansion and GHG mitigation in Kalimantan, a major oil palm growing region of Indonesia. Using a logistic regression model to predict the locations of new oil palm between 2010 and 2020 we evaluate the impacts of six alternative policy scenarios on future emissions. We estimate net emissions of 128.4-211.4 MtCO2 yr(-1) under business as usual expansion of oil palm plantations. The impact of diverting new plantations to low carbon stock land depends on the design of the policy. We estimate that emissions can be reduced by 9-10% by extending the current moratorium on new concessions in primary forests and peat lands, 35% by limiting expansion on all peat and forestlands, 46% by limiting expansion to areas with moderate carbon stocks, and 55-60% by limiting expansion to areas with low carbon stocks. Our results suggest that these policies would reduce oil palm profits only moderately but would vary greatly in terms of cost-effectiveness of emissions reductions. We conclude that a carefully designed and implemented oil palm expansion plan can contribute significantly towards Indonesia's national emissions mitigation goal, while allowing oil palm area to double.


Subject(s)
Arecaceae/growth & development , Climate Change , Plant Oils/chemistry , Carbon Dioxide/analysis , Geography , Indonesia , Logistic Models , Palm Oil , Propensity Score
6.
PLoS One ; 7(11): e49390, 2012.
Article in English | MEDLINE | ID: mdl-23166656

ABSTRACT

Terrestrial long-distance migrations are declining globally: in North America, nearly 75% have been lost. Yet there has been limited research comparing habitat suitability and connectivity models to identify migration corridors across increasingly fragmented landscapes. Here we use pronghorn (Antilocapra americana) migrations in prairie habitat to compare two types of models that identify habitat suitability: maximum entropy (Maxent) and expert-based (Analytic Hierarchy Process). We used distance to wells, distance to water, NDVI, land cover, distance to roads, terrain shape and fence presence to parameterize the models. We then used the output of these models as cost surfaces to compare two common connectivity models, least-cost modeling (LCM) and circuit theory. Using pronghorn movement data from spring and fall migrations, we identified potential migration corridors by combining each habitat suitability model with each connectivity model. The best performing model combination was Maxent with LCM corridors across both seasons. Maxent out-performed expert-based habitat suitability models for both spring and fall migrations. However, expert-based corridors can perform relatively well and are a cost-effective alternative if species location data are unavailable. Corridors created using LCM out-performed circuit theory, as measured by the number of pronghorn GPS locations present within the corridors. We suggest the use of a tiered approach using different corridor widths for prioritizing conservation and mitigation actions, such as fence removal or conservation easements.


Subject(s)
Animal Migration/physiology , Antelopes/physiology , Conservation of Natural Resources/methods , Ecosystem , Models, Theoretical , Animals , Computer Simulation , Geographic Information Systems , Geography , Montana , Saskatchewan , Seasons
7.
PLoS One ; 7(8): e43167, 2012.
Article in English | MEDLINE | ID: mdl-22937022

ABSTRACT

Predictive habitat models can provide critical information that is necessary in many conservation applications. Using Maximum Entropy modeling, we characterized habitat relationships and generated spatial predictions of spinner dolphin (Stenella longirostris) resting habitat in the main Hawaiian Islands. Spinner dolphins in Hawai'i exhibit predictable daily movements, using inshore bays as resting habitat during daylight hours and foraging in offshore waters at night. There are growing concerns regarding the effects of human activities on spinner dolphins resting in coastal areas. However, the environmental factors that define suitable resting habitat remain unclear and must be assessed and quantified in order to properly address interactions between humans and spinner dolphins. We used a series of dolphin sightings from recent surveys in the main Hawaiian Islands and a suite of environmental variables hypothesized as being important to resting habitat to model spinner dolphin resting habitat. The model performed well in predicting resting habitat and indicated that proximity to deep water foraging areas, depth, the proportion of bays with shallow depths, and rugosity were important predictors of spinner dolphin habitat. Predicted locations of suitable spinner dolphin resting habitat provided in this study indicate areas where future survey efforts should be focused and highlight potential areas of conflict with human activities. This study provides an example of a presence-only habitat model used to inform the management of a species for which patterns of habitat availability are poorly understood.


Subject(s)
Dolphins/physiology , Ecosystem , Animals
8.
Ecol Lett ; 12(3): 260-73, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19161432

ABSTRACT

Graph theory is a body of mathematics dealing with problems of connectivity, flow, and routing in networks ranging from social groups to computer networks. Recently, network applications have erupted in many fields, and graph models are now being applied in landscape ecology and conservation biology, particularly for applications couched in metapopulation theory. In these applications, graph nodes represent habitat patches or local populations and links indicate functional connections among populations (i.e. via dispersal). Graphs are models of more complicated real systems, and so it is appropriate to review these applications from the perspective of modelling in general. Here we review recent applications of network theory to habitat patches in landscape mosaics. We consider (1) the conceptual model underlying these applications; (2) formalization and implementation of the graph model; (3) model parameterization; (4) model testing, insights, and predictions available through graph analyses; and (5) potential implications for conservation biology and related applications. In general, and for a variety of ecological systems, we find the graph model a remarkably robust framework for applications concerned with habitat connectivity. We close with suggestions for further work on the parameterization and validation of graph models, and point to some promising analytic insights.


Subject(s)
Ecosystem , Models, Biological , Conservation of Natural Resources , Geographic Information Systems , Population Dynamics
9.
Conserv Biol ; 22(2): 297-307, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18241238

ABSTRACT

Connectivity of habitat patches is thought to be important for movement of genes, individuals, populations, and species over multiple temporal and spatial scales. We used graph theory to characterize multiple aspects of landscape connectivity in a habitat network in the North Carolina Piedmont (U.S.A). We compared this landscape with simulated networks with known topology, resistance to disturbance, and rate of movement. We introduced graph measures such as compartmentalization and clustering, which can be used to identify locations on the landscape that may be especially resilient to human development or areas that may be most suitable for conservation. Our analyses indicated that for songbirds the Piedmont habitat network was well connected. Furthermore, the habitat network had commonalities with planar networks, which exhibit slow movement, and scale-free networks, which are resistant to random disturbances. These results suggest that connectivity in the habitat network was high enough to prevent the negative consequences of isolation but not so high as to allow rapid spread of disease. Our graph-theory framework provided insight into regional and emergent global network properties in an intuitive and visual way and allowed us to make inferences about rates and paths of species movements and vulnerability to disturbance. This approach can be applied easily to assessing habitat connectivity in any fragmented or patchy landscape.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Models, Theoretical , Geography , North Carolina , Population Dynamics
10.
Ecol Appl ; 17(6): 1771-82, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17913139

ABSTRACT

Spatially explicit population models (SEPMs) are often considered the best way to predict and manage species distributions in spatially heterogeneous landscapes. However, they are computationally intensive and require extensive knowledge of species' biology and behavior, limiting their application in many cases. An alternative to SEPMs is graph theory, which has minimal data requirements and efficient algorithms. Although only recently introduced to landscape ecology, graph theory is well suited to ecological applications concerned with connectivity or movement. This paper compares the performance of graph theory to a SEPM in selecting important habitat patches for Wood Thrush (Hylocichla mustelina) conservation. We use both models to identify habitat patches that act as population sources and persistent patches and also use graph theory to identify patches that act as stepping stones for dispersal. Correlations of patch rankings were very high between the two models. In addition, graph theory offers the ability to identify patches that are very important to habitat connectivity and thus long-term population persistence across the landscape. We show that graph theory makes very similar predictions in most cases and in other cases offers insight not available from the SEPM, and we conclude that graph theory is a suitable and possibly preferable alternative to SEPMs for species conservation in heterogeneous landscapes.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Models, Theoretical , Algorithms , Population Density , Population Dynamics
11.
Ecol Appl ; 3(3): 481-496, 1993 Aug.
Article in English | MEDLINE | ID: mdl-27759253

ABSTRACT

Land managers face the difficult challenge of maintaining biodiversity on lands also used for commodity production. We present an approach for managing the habitats of terrestrial vertebrates at the landscape scale on multiple-use lands. The approach is based on the hypothesis that animal community response to landscape change is a function of species life histories and local patterns of landscape change. Key steps are: (1) set clear objectives; (2) associate target species with specific habitat configurations; (3) assess the potential sensitivity of species by mapping habitat suitability and examining species life histories; (4) evaluate alternative management prescriptions using simulation models; and (5) implement preferred or experimental strategies and monitor the responses of habitats and species. The approach was demonstrated for a watershed in western Oregon. Management objectives were to maximize habitat diversity for early- and late-successional bird species and to produce saw timber at levels compatible with the habitat goals. Habitat associations of 51 bird species were described by four variables that encompass three spatial scales. An analysis of species sensitivity to landscape change revealed several species that may merit special attention. The landscape model LSPA and the gap model ZELIG.PNW were used to simulate four disturbance/management scenarios over a 140-yr period: natural fire, wood production, multiple use, and no action. The results indicated that 65% more saw timber would be produced under the wood production run than the multiple-use run, but the former would maintain habitats for many fewer bird species than the latter. The multiple-use scenario was selected as the preferred alternative. We suggest carrying out management experiments and rigorous monitoring during the implementation phase. While this approach has various limitations, it is an incremental step towards the effective management of species diversity on multiple-use lands.

SELECTION OF CITATIONS
SEARCH DETAIL
...