Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Bioorg Chem ; 150: 107554, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38878753

ABSTRACT

Plasma membranes are vital biological structures, serving as protective barriers and participating in various cellular processes. In the field of super-resolution optical microscopy, stimulated emission depletion (STED) nanoscopy has emerged as a powerful method for investigating plasma membrane-related phenomena. However, many applications of STED microscopy are critically restricted by the limited availability of suitable fluorescent probes. This paper reports on the development of two amphiphilic membrane probes, SHE-2H and SHE-2N, specially designed for STED nanoscopy. SHE-2N, in particular, demonstrates quick and stable plasma membrane labelling with negligible intracellular redistribution. Both probes exhibit outstanding photostability and resolution improvement in STED nanoscopy, and are also suited for two-photon excitation microscopy. Furthermore, microscopy experiments and cytotoxicity tests revealed no noticeable cytotoxicity of probe SHE-2N at concentration used for fluorescence imaging. Spectral analysis and fluorescence lifetime measurements conducted on probe SHE-2N using giant unilamellar vesicles, revealed that emission spectra and fluorescence lifetimes exhibited minimal sensitivity to lipid composition variations. These novel probes significantly augment the arsenal of tools available for high-resolution plasma membrane research, enabling a more profound exploration of cellular processes and dynamics.

2.
Nat Methods ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834747

ABSTRACT

Fluorescence microscopy is limited by photoconversion due to continuous illumination, which results in not only photobleaching but also conversion of fluorescent molecules into species of different spectral properties through photoblueing. Here, we determined different fluorescence parameters of photoconverted products for various fluorophores under standard confocal and stimulated emission depletion (STED) microscopy conditions. We observed changes in both fluorescence spectra and lifetimes that can cause artifacts in quantitative measurements, which can be avoided by using exchangeable dyes.

3.
J Phys Chem B ; 128(9): 2154-2167, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38415644

ABSTRACT

The structural diversity of different lipid species within the membrane defines its biophysical properties such as membrane fluidity, phase transition, curvature, charge distribution, and tension. Environment-sensitive probes, which change their spectral properties in response to their surrounding milieu, have greatly contributed to our understanding of such biophysical properties. To realize the full potential of these probes and avoid misinterpretation of their spectral responses, a detailed investigation of their fluorescence characteristics in different environments is necessary. Here, we examined the fluorescence lifetime of two newly developed membrane order probes, NR12S and NR12A, in response to alterations in their environments such as the degree of lipid saturation, cholesterol content, double bond position and configuration, and phospholipid headgroup. As a comparison, we investigated the lifetime sensitivity of the membrane tension probe Flipper in these environments. Applying fluorescence lifetime imaging microscopy (FLIM) in both model membranes and biological membranes, all probes distinguished membrane phases by lifetime but exhibited different lifetime sensitivities to varying membrane biophysical properties (e.g., cholesterol). While the lifetime of Flipper is particularly sensitive to the membrane cholesterol content, the NR12S and NR12A lifetimes are moderately sensitive to both the cholesterol content and lipid acyl chains. Moreover, all of the probes exhibit longer lifetimes at longer emission wavelengths in membranes of any complexity. This emission wavelength dependency results in varying lifetime resolutions at different spectral regions, which are highly relevant for FLIM data acquisition. Our data provide valuable insights on how to perform FLIM with these probes and highlight both their potential and limitations.


Subject(s)
Fluorescent Dyes , Membrane Fluidity , Fluorescent Dyes/chemistry , Cell Membrane/chemistry , Phospholipids , Cholesterol/analysis , Spectrometry, Fluorescence/methods
4.
Nat Chem Biol ; 19(6): 669-670, 2023 06.
Article in English | MEDLINE | ID: mdl-36997648
5.
Nanoscale Horiz ; 8(6): 776-782, 2023 05 30.
Article in English | MEDLINE | ID: mdl-36951189

ABSTRACT

Cellulose nanocrystal and gold nanoparticles are assembled, in a unique way, to yield a novel modular glyconanomaterial whose surface is then easily engineered with one or two different headgroups, by exploiting a robust click chemistry route. We demonstrate the potential of this approach by conjugating monosaccharide headgroups to the glyconanomaterial and show that the sugars retain their binding capability to C-type lectin receptors, as also directly visualized by cryo-TEM.


Subject(s)
Metal Nanoparticles , Metal Nanoparticles/chemistry , Gold/chemistry , Cellulose/chemistry , Click Chemistry , Lectins, C-Type
6.
Sensors (Basel) ; 22(5)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35271117

ABSTRACT

Knowing the temperature distribution within the conducting walls of various multilayer-type materials is crucial for a better understanding of heat-transfer processes. This applies to many engineering fields, good examples being photovoltaics and microelectronics. In this work we present a novel fluorescence technique that makes possible the non-invasive imaging of local temperature distributions within a transparent, temperature-sensitive, co-doped Er:GPF1Yb0.5Er glass-ceramic with micrometer spatial resolution. The thermal imaging was performed with a high-resolution fluorescence microscopy system, measuring different focal planes along the z-axis. This ultimately enabled a precise axial reconstruction of the temperature distribution across a 500-µm-thick glass-ceramic sample. The experimental measurements showed good agreement with computer-modeled heat simulations and suggest that the technique could be adopted for the spatial analyses of local thermal processes within optically transparent materials. For instance, the technique could be used to measure the temperature distribution of intermediate, transparent layers of novel ultra-high-efficiency solar cells at the micron and sub-micron levels.

7.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35162996

ABSTRACT

Fluorescent carbon dots (CDs) are potential tools for the labeling of cells with many advantages such as photostability, multicolor emission, small size, rapid uptake, biocompatibility, and easy preparation. Affinity towards organelles can be influenced by the surface properties of CDs which affect the interaction with the cell and cytoplasmic distribution. Organelle targeting by carbon dots is promising for anticancer treatment; thus, intracellular trafficking and cytotoxicity of cationic CDs was investigated. Based on our previous study, we used quaternized carbon dots (QCDs) for treatment and monitoring the behavior of two human cancer cell MCF-7 and HeLa lines. We found similarities between human cancer cells and mouse fibroblasts in the case of QCDs uptake. Time lapse microscopy of QCDs-labeled MCF-7 cells showed that cells are dying during the first two hours, faster at lower doses than at higher ones. QCDs at a concentration of 100 µg/mL entered into the nucleus before cellular death; however, at a dose of 200 µg/mL, blebbing of the cellular membrane occurred, with a subsequent penetration of QCDs into the nuclear area. In the case of HeLa cells, the dose-depended effect did not happen; however, the labeled cells were also dying in mitosis and genotoxicity occurred nearly at all doses. Moreover, contrasted intracellular compartments, probably mitochondria, were obvious after 24 h incubation with 100 µg/mL of QCDs. The levels of reactive oxygen species (ROS) slightly increased after 24 h, depending on the concentration, thus the genotoxicity was likely evoked by the nanomaterial. A decrease in viability did not reach IC 50 as the DNA damage was probably partly repaired in the prolonged G0/G1 phase of the cell cycle. Thus, the defects in the G2/M phase may have allowed a damaged cell to enter mitosis and undergo apoptosis. The anticancer effect in both cell lines was manifested mainly through genotoxicity.


Subject(s)
Carbon/pharmacokinetics , Fibroblasts/cytology , Neoplasms/metabolism , Quantum Dots/chemistry , Reactive Oxygen Species/metabolism , Time-Lapse Imaging/methods , Animals , Biological Transport , Carbon/chemistry , Carbon/pharmacology , Cell Line , Cell Proliferation , Cell Survival/drug effects , DNA Damage , Fibroblasts/drug effects , Fibroblasts/metabolism , G2 Phase Cell Cycle Checkpoints/drug effects , HeLa Cells , Humans , MCF-7 Cells , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Optical Imaging
8.
Nanotoxicology ; 15(8): 1102-1123, 2021 10.
Article in English | MEDLINE | ID: mdl-34612152

ABSTRACT

Nanotechnologies hold great promise for various applications. To predict and guarantee the safety of novel nanomaterials, it is essential to understand their mechanism of action in an organism, causally connecting adverse outcomes with early molecular events. This is best investigated using noninvasive advanced optical methods, such as high-resolution live-cell fluorescence microscopy, which require stable labeling of nanoparticles with fluorescent dyes. However, as shown here, when the labeling is performed inadequately, unbound fluorescent dyes and inadvertently altered chemical and physical properties of the nanoparticles can result in experimental artefacts and erroneous conclusions. To prevent such unintentional errors, we introduce a tested minimal combination of experimental methods to enable artefact-free fluorescent labeling of metal-oxide nanoparticles-the largest subpopulation of nanoparticles by industrial production and applications-and demonstrate its application in the case of TiO2 nanotubes. We (1) characterize potential changes of the nanoparticles' surface charge and morphology that might occur during labeling by using zeta potential measurements and transmission electron microscopy, respectively, and (2) assess stable binding of the fluorescent dye to the nanoparticles with either fluorescence intensity measurements or fluorescence correlation spectroscopy, which ensures correct nanoparticle localization. Together, these steps warrant the reliability and reproducibility of advanced optical tracking, which is necessary to explore nanomaterials' mechanism of action and will foster widespread and safe use of new nanomaterials.


Subject(s)
Metal Nanoparticles , Nanoparticles , Artifacts , Fluorescent Dyes , Metal Nanoparticles/toxicity , Microscopy, Fluorescence , Nanoparticles/toxicity , Oxides/toxicity , Reproducibility of Results
9.
FEBS Lett ; 595(16): 2127-2146, 2021 08.
Article in English | MEDLINE | ID: mdl-34160065

ABSTRACT

To disentangle the elusive lipid-protein interactions in T-cell activation, we investigate how externally imposed variations in mobility of key membrane proteins (T-cell receptor [TCR], kinase Lck, and phosphatase CD45) affect the local lipid order and protein colocalisation. Using spectral imaging with polarity-sensitive membrane probes in model membranes and live Jurkat T cells, we find that partial immobilisation of proteins (including TCR) by aggregation or ligand binding changes their preference towards a more ordered lipid environment, which can recruit Lck. Our data suggest that the cellular membrane is poised to modulate the frequency of protein encounters upon alterations of their mobility, for example in ligand binding, which offers new mechanistic insight into the involvement of lipid-mediated interactions in membrane-hosted signalling events.


Subject(s)
Cell Membrane/metabolism , Lipid Metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Aggregates , T-Lymphocytes/cytology , Humans , Jurkat Cells , Signal Transduction
10.
Int J Mol Sci ; 22(11)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070594

ABSTRACT

It is important to understand the nanomaterials intracellular trafficking and distribution and investigate their targeting into the nuclear area in the living cells. In our previous study, we firstly observed penetration of nonmodified positively charged carbon dots decorated with quaternary ammonium groups (QCDs) into the nucleus of mouse NIH/3T3 fibroblasts. Thus, in this work, we focused on deeper study of QCDs distribution inside two healthy mouse NIH/3T3 and L929 cell lines by fluorescence microspectroscopy and performed a comprehensive cytotoxic and DNA damage measurements. Real-time penetration of QCDs across the plasma cell membrane was recorded, concentration dependent uptake was determined and endocytic pathways were characterized. We found out that the QCDs concentration of 200 µg/mL is close to saturation and subsequently, NIH/3T3 had a different cell cycle profile, however, no significant changes in viability (not even in the case with QCDs in the nuclei) and DNA damage. In the case of L929, the presence of QCDs in the nucleus evoked a cellular death. Intranuclear environment of NIH/3T3 cells affected fluorescent properties of QCDs and evoked fluorescence blue shifts. Studying the intracellular interactions with CDs is essential for development of future applications such as DNA sensing, because CDs as DNA probes have not yet been developed.


Subject(s)
Carbon , Cell Cycle/drug effects , Cell Membrane/metabolism , Cell Nucleus/metabolism , Fibroblasts/metabolism , Quantum Dots , Animals , Carbon/chemistry , Carbon/pharmacology , Cell Survival/drug effects , Mice , Microscopy, Fluorescence , NIH 3T3 Cells , Quantum Dots/chemistry , Quantum Dots/therapeutic use
11.
Bioorg Chem ; 109: 104730, 2021 04.
Article in English | MEDLINE | ID: mdl-33621778

ABSTRACT

Lectins are involved in a wide range of carbohydrate mediated recognition processes. Therefore, the availability of highly performant fluorescent tools tailored for lectin targeting and able to efficiently track events related to such key targets is in high demand. We report here on the synthesis of the glyco-BODIPYs 1 and 2, based on the efficient combination of a Heck-like cross coupling and a Knoevenagel condensation, which revealed efficient in addressing lectins. In particular, glyco-BODIPY 1 has two glycosidase stable C-mannose residues, which act as DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) targeting modules. By using live-cell fluorescence microscopy, we proved that BODIPY-mannose 1 was efficiently taken up by immune cells expressing DC-SIGN receptors. Super-resolution stimulated emission depletion (STED) microscopy further revealed that the internalized 1 localized in membranes of endosomes, proving that 1 is a reliable tool also in STED applications. Of note, glyco-BODIPY 1 contains an aryl-azido group, which allows further functionalization of the glycoprobe with bioactive molecules, thus paving the way for the use of 1 for tracking lectin-mediated cell internalization in diverse biological settings.


Subject(s)
Boron Compounds/chemistry , Cell Adhesion Molecules/analysis , Lectins, C-Type/analysis , Receptors, Cell Surface/analysis , Boron Compounds/chemical synthesis , Cell Line , Dose-Response Relationship, Drug , Glucose/chemistry , Healthy Volunteers , Humans , Mannose/chemistry , Molecular Structure , Structure-Activity Relationship
12.
J Phys D Appl Phys ; 53(16): 164003, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-33191951

ABSTRACT

Probing the diffusion of molecules has become a routine measurement across the life sciences, chemistry and physics. It provides valuable insights into reaction dynamics, oligomerisation, molecular (re-)organisation or cellular heterogeneities. Fluorescence correlation spectroscopy (FCS) is one of the widely applied techniques to determine diffusion dynamics in two and three dimensions. This technique relies on the temporal autocorrelation of intensity fluctuations but recording these fluctuations has thus far been limited by the detection electronics, which could not efficiently and accurately time-tag photons at high count rates. This has until now restricted the range of measurable dye concentrations, as well as the data quality of the FCS recordings, especially in combination with super-resolution stimulated emission depletion (STED) nanoscopy. Here, we investigate the applicability and reliability of (STED-)FCS at high photon count rates (average intensities of more than 1 MHz) using novel detection equipment, namely hybrid detectors and real-time gigahertz sampling of the photon streams implemented on a commercial microscope. By measuring the diffusion of fluorophores in solution and cytoplasm of live cells, as well as in model and cellular membranes, we show that accurate diffusion and concentration measurements are possible in these previously inaccessible high photon count regimes. Specifically, it offers much greater flexibility of experiments with biological samples with highly variable intensity, e.g. due to a wide range of expression levels of fluorescent proteins. In this context, we highlight the independence of diffusion properties of cytosolic GFP in a concentration range of approx. 0.01-1 µm. We further show that higher photon count rates also allow for much shorter acquisition times, and improved data quality. Finally, this approach also pronouncedly increases the robustness of challenging live cell STED-FCS measurements of nanoscale diffusion dynamics, which we testify by confirming a free diffusion pattern for a fluorescent lipid analogue on the apical membrane of adherent cells.

13.
Adv Mater ; 32(47): e2003913, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33073368

ABSTRACT

On a daily basis, people are exposed to a multitude of health-hazardous airborne particulate matter with notable deposition in the fragile alveolar region of the lungs. Hence, there is a great need for identification and prediction of material-associated diseases, currently hindered due to the lack of in-depth understanding of causal relationships, in particular between acute exposures and chronic symptoms. By applying advanced microscopies and omics to in vitro and in vivo systems, together with in silico molecular modeling, it is determined herein that the long-lasting response to a single exposure can originate from the interplay between the newly discovered nanomaterial quarantining and nanomaterial cycling between different lung cell types. This new insight finally allows prediction of the spectrum of lung inflammation associated with materials of interest using only in vitro measurements and in silico modeling, potentially relating outcomes to material properties for a large number of materials, and thus boosting safe-by-design-based material development. Because of its profound implications for animal-free predictive toxicology, this work paves the way to a more efficient and hazard-free introduction of numerous new advanced materials into our lives.


Subject(s)
Computer Simulation , Inhalation , Lung/drug effects , Lung/pathology , Particulate Matter/toxicity , Chronic Disease , Epithelium/drug effects , Epithelium/metabolism , Epithelium/pathology , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Lung/metabolism , Particle Size , Particulate Matter/chemistry , Particulate Matter/metabolism , Safety , Toxicity Tests
14.
ACS Photonics ; 7(7): 1742-1753, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32685609

ABSTRACT

Fluorescence correlation spectroscopy (FCS) is a valuable tool to study the molecular dynamics in living cells. When used together with a super-resolution stimulated emission depletion (STED) microscope, STED-FCS can measure diffusion processes on the nanoscale in living cells. In two-dimensional (2D) systems like the cellular plasma membrane, a ring-shaped depletion focus is most commonly used to increase the lateral resolution, leading to more than 25-fold decrease in the observation volume, reaching the relevant scale of supramolecular arrangements. However, STED-FCS faces severe limitations when measuring diffusion in three dimensions (3D), largely due to the spurious background contributions from undepleted areas of the excitation focus that reduce the signal quality and ultimately limit the resolution. In this paper, we investigate how different STED confinement modes can mitigate this issue. By simulations as well as experiments with fluorescent probes in solution and in cells, we demonstrate that the coherent-hybrid (CH) depletion pattern created by a bivortex phase mask reduces background most efficiently and thus provides superior signal quality under comparable reduction of the observation volume. Featuring also the highest robustness to common optical aberrations, CH-STED can be considered the method of choice for reliable STED-FCS-based investigations of 3D diffusion on the subdiffraction scale.

15.
Biophys J ; 118(10): 2448-2457, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32359408

ABSTRACT

Super-resolution stimulated emission depletion (STED) microcopy provides optical resolution beyond the diffraction limit. The resolution can be increased laterally (xy) or axially (z). Two-dimensional STED has been extensively used to elucidate the nanoscale membrane structure and dynamics via imaging or combined with spectroscopy techniques such as fluorescence correlation spectroscopy (FCS) and spectral imaging. On the contrary, z-STED has not been used in this context. Here, we show that a combination of z-STED with FCS or spectral imaging enables us to see previously unobservable aspects of cellular membranes. We show that thanks to an axial resolution of ∼100 nm, z-STED can be used to distinguish axially close-by membranes, early endocytic vesicles, or tubular membrane structures. Combination of z-STED with FCS and spectral imaging showed diffusion dynamics and lipid organization in these structures, respectively.


Subject(s)
Microscopy, Fluorescence , Cell Membrane , Diffusion , Spectrometry, Fluorescence
16.
Chem Sci ; 11(33): 8955-8960, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-34123149

ABSTRACT

Dyads consisting of a photochromic switch covalently linked to a fluorescent dye allow the emission from the dye to be controlled by reversible photoisomerization of the switch; one form of the switch quenches fluorescence by accepting energy from the dye. Here we investigate the use of dyads of this type for super-resolution imaging of lipid bilayers. Giant unilamellar vesicles stained with the dyads were imaged with about a two-fold resolution-enhancement compared with conventional confocal microscopy. This was achieved by exciting the fluorophore at 594 nm, using a switch activated by violet and red light (405/640 nm).

17.
Commun Biol ; 2: 337, 2019.
Article in English | MEDLINE | ID: mdl-31531398

ABSTRACT

Regulation of plasma membrane curvature and composition governs essential cellular processes. The material property of bending rigidity describes the energetic cost of membrane deformations and depends on the plasma membrane molecular composition. Because of compositional fluctuations and active processes, it is challenging to measure it in intact cells. Here, we study the plasma membrane using giant plasma membrane vesicles (GPMVs), which largely preserve the plasma membrane lipidome and proteome. We show that the bending rigidity of plasma membranes under varied conditions is correlated to readout from environment-sensitive dyes, which are indicative of membrane order and microviscosity. This correlation holds across different cell lines, upon cholesterol depletion or enrichment of the plasma membrane, and variations in cell density. Thus, polarity- and viscosity-sensitive probes represent a promising indicator of membrane mechanical properties. Additionally, our results allow for identifying synthetic membranes with a few well defined lipids as optimal plasma membrane mimetics.


Subject(s)
Cell Count , Cell Membrane/chemistry , Mechanical Phenomena , Membrane Lipids/chemistry , Transport Vesicles/chemistry , Viscosity , Chemical Phenomena , Cholesterol/chemistry , Humans , Temperature
18.
Opt Express ; 27(16): 23378-23395, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31510616

ABSTRACT

Fluorescence correlation spectroscopy in combination with super-resolution stimulated emission depletion microscopy (STED-FCS) is a powerful tool to investigate molecular diffusion with sub-diffraction resolution. It has been of particular use for investigations of two dimensional systems like cell membranes, but has so far seen very limited applications to studies of three-dimensional diffusion. One reason for this is the extreme sensitivity of the axial (z) STED depletion pattern to optical aberrations. We present here an adaptive optics-based correction method that compensates for these aberrations and allows STED-FCS measurements in the cytoplasm of living cells.


Subject(s)
Cytoplasm/metabolism , Microscopy, Fluorescence/methods , Optics and Photonics , Spectrometry, Fluorescence/methods , Cell Survival , Diffusion , Humans , Solutions
19.
Nat Protoc ; 14(4): 1054-1083, 2019 04.
Article in English | MEDLINE | ID: mdl-30842616

ABSTRACT

Super-resolution microscopy techniques enable optical imaging in live cells with unprecedented spatial resolution. They unfortunately lack the temporal resolution required to directly investigate cellular dynamics at scales sufficient to measure molecular diffusion. These fast time scales are, on the other hand, routinely accessible by spectroscopic techniques such as fluorescence correlation spectroscopy (FCS). To enable the direct investigation of fast dynamics at the relevant spatial scales, FCS has been combined with super-resolution stimulated emission depletion (STED) microscopy. STED-FCS has been applied in point or scanning mode to reveal nanoscale diffusion behavior of molecules in live cells. In this protocol, we describe the technical details of performing point STED-FCS (pSTED-FCS) and scanning STED-FCS (sSTED-FCS) measurements, from calibration and sample preparation to data acquisition and analysis. We give particular emphasis to 2D diffusion dynamics in cellular membranes, using molecules tagged with organic fluorophores. These measurements can be accomplished within 4-6 h by those proficient in fluorescence imaging.


Subject(s)
Cell Membrane/metabolism , Epithelial Cells/metabolism , Fluorescent Dyes/chemistry , Microscopy, Fluorescence/methods , Optical Imaging/methods , Spectrometry, Fluorescence/methods , Animals , Calibration , Cell Line , Cell Membrane/ultrastructure , Diffusion , Epithelial Cells/ultrastructure , Kidney , Microscopy, Fluorescence/instrumentation , Optical Imaging/instrumentation , Rats , Specimen Handling/methods , Spectrometry, Fluorescence/instrumentation
20.
Viruses ; 10(8)2018 08 08.
Article in English | MEDLINE | ID: mdl-30096847

ABSTRACT

Human Immunodeficiency Virus type-1 (HIV-1) acquires its lipid membrane from the plasma membrane of the infected cell from which it buds out. Previous studies have shown that the HIV-1 envelope is an environment of very low mobility, with the diffusion of incorporated proteins two orders of magnitude slower than in the plasma membrane. One of the reasons for this difference is thought to be the HIV-1 membrane composition that is characterised by a high degree of rigidity and lipid packing, which has, until now, been difficult to assess experimentally. To further refine the model of the molecular mobility on the HIV-1 surface, we herein investigated the relative importance of membrane composition and curvature in simplified model membrane systems, large unilamellar vesicles (LUVs) of different lipid compositions and sizes (0.1⁻1 µm), using super-resolution stimulated emission depletion (STED) microscopy-based fluorescence correlation spectroscopy (STED-FCS). Establishing an approach that is also applicable to measurements of molecule dynamics in virus-sized particles, we found, at least for the 0.1⁻1 µm sized vesicles, that the lipid composition and thus membrane rigidity, but not the curvature, play an important role in the decreased molecular mobility on the vesicles' surface. This observation suggests that the composition of the envelope rather than the particle geometry contributes to the previously described low mobility of proteins on the HIV-1 surface. Our vesicle-based study thus provides further insight into the dynamic properties of the surface of individual HIV-1 particles, as well as paves the methodological way towards better characterisation of the properties and function of viral lipid envelopes in general.


Subject(s)
HIV-1/chemistry , Membrane Lipids/chemistry , Membranes/chemistry , Unilamellar Liposomes/chemistry , Diffusion , Humans , Microscopy, Fluorescence , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...