Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Genet ; 64(3): 445-458, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37454028

ABSTRACT

Trihelix transcription factors are involved in the growth and development of plants, as well as various stress responses. In the study presented, we identified 37 trihelix family genes in the apple genome (MdTH). The trihelix genes were located on 13 chromosomes. Phylogenetic analysis of these MdTH and the trihelix genes of other species divided them into six subfamilies: GT-1, GT-2, SH4, SIP1, GTγ, and GTδ. The genes of different groups significantly diverged in their gene structure and conserved functional domains. Cis-element analysis showed that promoter sequences of MdTH genes contained light response elements, phytohormone response elements, and stress-related cis-elements. The expression pattern analysis results demonstrated that MdTH were regulated by drought, salinity, as well as high and low temperatures. MdTH4 and MdTH24 were highly regulated by soil salinity, MdTH4-by drought. MdTH30 showed high expression under low temperature; MdTH8, MdTH20, and MdTH36-under high temperature.


Subject(s)
Malus , Malus/genetics , Malus/metabolism , Transcription Factors/genetics , Phylogeny , Plant Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Stress, Physiological/genetics
2.
J Hazard Mater ; 400: 123138, 2020 12 05.
Article in English | MEDLINE | ID: mdl-32947735

ABSTRACT

Mercury (Hg) and its compounds are one of the most dangerous environmental pollutants and Hg pollution exists in soils in different degrees over the world. Phytoremediation of Hg-contaminated soils has attracted increasing attention for the advantages of low investment, in-situ remediation, potential economic benefits and so on. Searching for the hyperaccumulator of Hg and its application in practice become a research hotspot. In this context, we review the current literatures that introduce various experimental plant species for accumulating Hg and aided techniques improving the phytoremediation of Hg-contaminated soils. Experimental plant species for accumulating Hg and accumulation or translocation factor of Hg are listed in detail. The translocation factor (TF) is greater than 1.0 for some plant species, however, the bioaccumulation factor (BAF) is greater than 1.0 for Axonopus compressus only. Plant species, soil properties, weather condition, and the bioavailability and heterogeneity of Hg in soils are the main factors affecting the phytoremediation of Hg-contaminated soils. Chemical accelerator kinds and promoting effect of chemical accelerators for accumulating and transferring Hg by various plant species are also discussed. Potassium iodide, compost, ammonium sulphate, ammonium thiosulfate, sodium sulfite, sodium thiosulfate, hydrochloric acid and sulfur fertilizer may be selected to promote the absorption of Hg by plants. The review introduces transgenic gene kinds and promoting effect of transgenic plants for accumulating and transferring Hg in detail. Some transgenic plants can accumulate more Hg than non-transgenic plants. The composition of rhizosphere microorganisms of remediation plants and the effect of rhizosphere microorganisms on the phytoremediation of Hg-contaminated soils are also introduced. Some rhizosphere microorganisms can increase the mobility of Hg in soils and are beneficial for the phytoremediation.


Subject(s)
Biodegradation, Environmental , Mercury , Soil Pollutants , Rhizosphere , Soil , Soil Pollutants/analysis
3.
Ecotoxicol Environ Saf ; 191: 110181, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31951901

ABSTRACT

The treatment of plants with heavy metals, whether they grow naturally in heavy metal contaminated soil or are used for remediation of heavy metal contaminated soil has attracted increasing attention. Pyrolysis is often used for the disposal of plants with heavy metals because it stabilizes heavy metals effectively and produces biochar. The resulting products of pyrolysis are in the form of solid components (char and ash), liquid components (bio-oil and tar), together with gas components (condensable and non-condensable vapor gas). The metal amount in the char or liquid and gaseous phases can be maximized or minimized via treating a plant feedstock containing heavy metals under different conditions. In addition, the potential risk of biochar produced from plants after pyrolysis becomes a research hotspot in the field of pyrolysis technology of plants containing heavy metals. Herein, we review current literatures that emphasize the influencing factors on the metal content in the biochar, liquid and gaseous phases, as well as the potential risk of biochar.


Subject(s)
Charcoal/chemistry , Metals, Heavy/chemistry , Plants/metabolism , Soil Pollutants/chemistry , Biodegradation, Environmental , Charcoal/toxicity , Metals, Heavy/analysis , Metals, Heavy/metabolism , Pyrolysis , Refuse Disposal , Soil Pollutants/analysis , Soil Pollutants/metabolism
4.
Environ Pollut ; 254(Pt A): 112968, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31554144

ABSTRACT

This study analyzed the effect of heavy metal eluents (0.3 mol/L C6H8O7, 5 × 10-4 mol/L EDTA, and 0.01 mol/L Na2S2O3) on the content of organic matter, hydrolytic nitrogen, available phosphorus and potassium, and species composition of bacteria and fungi in vegetable soils. The obtained results documented that the treatment of the soil, consisting of shaking the sample with a mixture of eluents, significantly increased the content of organic matter, hydrolytic nitrogen, and available phosphorus and potassium. The mixed solutions of eluents increase the maximum available P in the soil by 279.3%, and hydrolytic N by 30.7%. The eluents affected, to a certain extent, the dominant species of microorganisms in the soil, but did not increase species richness and evenness in all soil samples.


Subject(s)
Bacteria/growth & development , Fungi/growth & development , Metals, Heavy/analysis , Soil Pollutants/analysis , Soil/chemistry , Bacteria/metabolism , Fungi/metabolism , Nitrogen/analysis , Phosphorus/analysis , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...