Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(17): 6378-6384, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38699259

ABSTRACT

In spite of the ubiquity of acid/base ions and salts in biological systems, their influence on hydrophobic self-assembly remains an open question. Here we use a combined experimental and theoretical strategy to quantify the influence of H+ and OH-, as well as salts containing Li+, Na+, Cl- and Br-, on the hydrophobic self-assembly of micelles composed of neutral oily 1,2-hexanediol surfactants. The distributions of aggregate sizes, both below and above the critical micelle concentration (CMC), are determined using Raman multivariate curve resolution (Raman-MCR) spectroscopy to quantify the multi-aggregation chemical potential surface (MCPS) that drives self-assembly. The results reveal that ions have little influence on the formation of hydrophobic contact dimers but can significantly drive high-order self assembly. Moreover, the hydration-shells of oily solutes are found to expel the above salt ions and OH-, but to attract H+, with wide-ranging implications.

2.
J Phys Chem A ; 128(6): 1124-1133, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38306293

ABSTRACT

Pyrimidine has two in-plane CH(δ+)/N̈(δ-)/CH(δ+) binding sites that are complementary to the (δ-/2δ+/δ-) quadrupole moment of CO2. We recorded broadband microwave spectra over the 7.5-17.5 GHz range for pyrimidine-(CO2)n with n = 1 and 2 formed in a supersonic expansion. Based on fits of the rotational transitions, including nuclear hyperfine splitting due to the two 14N nuclei, we have assigned 313 hyperfine components across 105 rotational transitions for the n = 1 complex and 208 hyperfine components across 105 rotational transitions for the n = 2 complex. The pyrimidine-CO2 complex is planar, with CO2 occupying one of the quadrupolar binding sites, forming a structure in which the CO2 is stabilized in the plane by interactions with the C-H hydrogens adjacent to the nitrogen atom. This structure is closely analogous to that of the pyridine-CO2 complex studied previously by (Doran, J. L. J. Mol. Struct. 2012, 1019, 191-195). The fit to the n = 2 cluster gives rotational constants consistent with a planar cluster of C2v symmetry in which the second CO2 molecule binds in the second quadrupolar binding pocket on the opposite side of the ring. The calculated total binding energy in pyrimidine-CO2 is -13.7 kJ mol-1, including corrections for basis set superposition error and zero-point energy, at the CCSD(T)/ 6-311++G(3df,2p) level, while that in pyrimidine-(CO2)2 is almost exactly double that size, indicating little interaction between the two CO2 molecules in the two binding sites. The enthalpy, entropy, and free energy of binding are also calculated at 300 K within the harmonic oscillator/rigid-rotor model. This model is shown to lack quantitative accuracy when it is applied to the formation of weakly bound complexes.

3.
J Phys Chem Lett ; 14(50): 11376-11383, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38078837

ABSTRACT

The microheterogeneous structure of aqueous tert-butyl alcohol (TBA) solutions is quantified by combining experimental, simulations, and theoretical results. Experimental Raman multivariate curve resolution (Raman-MCR) C-H frequency shift measurements are compared with predictions obtained using combined quantum mechanical and effective fragment potential (QM/EFP) calculations, as well as with molecular dynamics (MD), random mixture (RM), and finite lattice (FL) predictions. The results indicate that the microheterogeneous aggregation in aqueous TBA solutions is slightly less than that predicted by MD simulations performed using either CHARMM generalized force field (CGenFF) or optimized parameters for liquid simulations all atom (OPLS-AA) force fields but slightly more than that in a self-avoiding RM of TBA-like molecules. The results imply that the onset of microheterogeneity in aqueous solutions occurs when solute contact free energies are about an order of magnitude smaller than thermal fluctuations, thus suggesting a fundamental bound of relevance to biological self-assembly.

4.
J Phys Chem B ; 126(4): 869-877, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35077175

ABSTRACT

The affinity of hydroxide ions for methyl hydration shells is assessed using a combined experimental and theoretical analysis of tert-butyl alcohol (TBA) dissolved in pure water and aqueous NaOH and NaI. The experimental results are obtained using Raman multivariate curve resolution (Raman-MCR) and a new three-component total least squares (Raman-TLS) spectral decomposition strategy used to highlight vibrational perturbations resulting from interactions between TBA and aqueous ions. The experiments are interpreted and extended with the aid of effective fragment potential molecular dynamics (EFP-MD) simulations, as well as Kirkwood-Buff calculations and octanol/water partition measurements, to relate TBA-ion distribution functions to TBA solubility changes. The combined experimental and simulation results reveal that methyl group hydration shells more strongly expel hydroxide than iodide anions, whose populations near the methyl groups of TBA are predicted to be correlated with sodium counterion localization near the TBA hydroxyl group.


Subject(s)
Water , tert-Butyl Alcohol , Iodides , Ions , Molecular Dynamics Simulation
5.
J Phys Chem B ; 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34133177

ABSTRACT

Raman multivariate curve resolution is used to decompose the vibrational spectra of aqueous hydrogen peroxide (H2O2) into pure water, dilute H2O2, and concentrated H2O2 spectral components. The dilute spectra reveal four sub-bands in the OH stretch region, assigned to the OH stretch and Fermi resonant bend overtone of H2O2, and two nonequivalent OH groups on water molecules that donate a hydrogen bond to H2O2. At high concentrations, a spectral component resembling pure H2O2 emerges. Our results further demonstrate that H2O2 perturbs the structure of water significantly less than either methanol or sodium chloride of the same concentration, as evidenced by comparing the hydration-shell spectra of tert-butyl alcohol dissolved in the three aqueous solutions.

6.
J Phys Chem B ; 124(48): 11015-11021, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33205979

ABSTRACT

Raman multivariate curve resolution vibrational spectroscopy and X-ray crystallography are used to quantify changes in the gauche-trans conformational equilibrium of 1-bromopropane (1-BP) upon binding to α-cyclodextrin (α-CD). Both conformers of 1-BP are found to bind to α-CD, although binding favors the unfolded trans conformation. Temperature-dependent measurements of the binding-induced change in the 1-BP conformation equilibrium constant indicate that the trans conformer is both enthalpically and entropically stabilized in the host cavity.

7.
J Phys Chem Lett ; 10(20): 6067-6073, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31549833

ABSTRACT

Molecules with an excess number of hydrogen-bonding partners play a crucial role in fundamental chemical processes, ranging from anomalous diffusion in supercooled water to transport of aqueous proton defects and ordering of water around hydrophobic solutes. Here we show that overcoordinated hydrogen-bond environments can be identified in both the ambient and supercooled regimes of liquid water by combining experimental Raman multivariate curve resolution measurements and machine learning accelerated quantum simulations. In particular, we find that OH groups appearing in spectral regions usually associated with non-hydrogen-bonded species actually correspond to hydrogen bonds formed in overcoordinated environments. We further show that only these species exhibit a turnover in population as a function of temperature, which is robust and persists under both constant pressure and density conditions. This work thus provides a new tool to identify, interpret, and elucidate the spectral signatures of crowded hydrogen-bond networks.

8.
J Chem Phys ; 144(24): 244104, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27369494

ABSTRACT

In the present work, the information gained by an electron for "knowing" about the position of another electron with the same spin is calculated using the Kullback-Leibler divergence (DKL) between the same-spin conditional pair probability density and the marginal probability. DKL is proposed as an electron localization measurement, based on the observation that regions of the space with high information gain can be associated with strong correlated localized electrons. Taking into consideration the scaling of DKL with the number of σ-spin electrons of a system (N(σ)), the quantity χ = (N(σ) - 1) DKLfcut is introduced as a general descriptor that allows the quantification of the electron localization in the space. fcut is defined such that it goes smoothly to zero for negligible densities. χ is computed for a selection of atomic and molecular systems in order to test its capability to determine the region in space where electrons are localized. As a general conclusion, χ is able to explain the electron structure of molecules on the basis of chemical grounds with a high degree of success and to produce a clear differentiation of the localization of electrons that can be traced to the fluctuation in the average number of electrons in these regions.

SELECTION OF CITATIONS
SEARCH DETAIL
...