Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 134: 134-42, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25127524

ABSTRACT

BACKGROUND: The rapid development and increased use of wireless telecommunication technologies led to a substantial change of radio-frequency electromagnetic field (RF-EMF) exposure in the general population but little is known about temporal trends of RF-EMF in our everyday environment. OBJECTIVES: The objective of our study is to evaluate temporal trends of RF-EMF exposure levels in different microenvironments of three European cities using a common measurement protocol. METHODS: We performed measurements in the cities of Basel (Switzerland), Ghent and Brussels (Belgium) during one year, between April 2011 and March 2012. RF-EMF exposure in 11 different frequency bands ranging from FM (Frequency Modulation, 88 MHz) to WLAN (Wireless Local Area Network, 2.5 GHz) was quantified with portable measurement devices (exposimeters) in various microenvironments: outdoor areas (residential areas, downtown and suburb), public transports (train, bus and tram or metro rides) and indoor places (airport, railway station and shopping centers). Measurements were collected every 4s during 10-50 min per environment and measurement day. Linear temporal trends were analyzed by mixed linear regression models. RESULTS: Highest total RF-EMF exposure levels occurred in public transports (all public transports combined) with arithmetic mean values of 0.84 V/m in Brussels, 0.72 V/m in Ghent, and 0.59 V/m in Basel. In all outdoor areas combined, mean exposure levels were 0.41 V/m in Brussels, 0.31 V/m in Ghent and 0.26 V/m in Basel. Within one year, total RF-EMF exposure levels in all outdoor areas in combination increased by 57.1% (p<0.001) in Basel by 20.1% in Ghent (p=0.053) and by 38.2% (p=0.012) in Brussels. Exposure increase was most consistently observed in outdoor areas due to emissions from mobile phone base stations. In public transports RF-EMF levels tended also to increase but mostly without statistical significance. DISCUSSION: An increase of RF-EMF exposure levels has been observed between April 2011 and March 2012 in various microenvironments of three European cities. Nevertheless, exposure levels were still far below regulatory limits of each country. A continuous monitoring is needed to identify high exposure areas and to anticipate critical development of RF-EMF exposure at public places.


Subject(s)
Electromagnetic Fields , Environmental Exposure , Radio Waves , Cities , Europe , Humans
2.
Environ Int ; 68: 49-54, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24704639

ABSTRACT

BACKGROUND: Concerns of the general public about potential adverse health effects caused by radio-frequency electromagnetic fields (RF-EMFs) led authorities to introduce precautionary exposure limits, which vary considerably between regions. It may be speculated that precautionary limits affect the base station network in a manner that mean population exposure unintentionally increases. AIMS: The objectives of this multicentre study were to compare mean exposure levels in outdoor areas across four different European cities and to compare with regulatory RF-EMF exposure levels in the corresponding areas. METHODS: We performed measurements in the cities of Amsterdam (the Netherlands, regulatory limits for mobile phone base station frequency bands: 41-61 V/m), Basel (Switzerland, 4-6 V/m), Ghent (Belgium, 3-4.5 V/m) and Brussels (Belgium, 2.9-4.3 V/m) using a portable measurement device. Measurements were conducted in three different types of outdoor areas (central and non-central residential areas and downtown), between 2011 and 2012 at 12 different days. On each day, measurements were taken every 4s for approximately 15 to 30 min per area. Measurements per urban environment were repeated 12 times during 1 year. RESULTS: Arithmetic mean values for mobile phone base station exposure ranged between 0.22 V/m (Basel) and 0.41 V/m (Amsterdam) in all outdoor areas combined. The 95th percentile for total RF-EMF exposure varied between 0.46 V/m (Basel) and 0.82 V/m (Amsterdam) and the 99th percentile between 0.81 V/m (Basel) and 1.20 V/m (Brussels). CONCLUSIONS: All exposure levels were far below international reference levels proposed by ICNIRP (International Commission on Non-Ionizing Radiation Protection). Our study did not find indications that lowering the regulatory limit results in higher mobile phone base station exposure levels.


Subject(s)
Cities , Electromagnetic Fields , Environmental Exposure , Cell Phone , Environmental Exposure/analysis , Environmental Exposure/legislation & jurisprudence , Europe , Female , Government Regulation , Humans , Radio Waves
3.
Sci Total Environ ; 468-469: 1028-33, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24091124

ABSTRACT

BACKGROUND: Radiofrequency electromagnetic fields (RF-EMF) are highly variable and differ considerably within as well as between areas. Exposure assessment studies characterizing spatial and temporal variation are limited so far. Our objective was to evaluate sources of data variability and the repeatability of daily measurements using portable exposure meters (PEMs). METHODS: Data were collected at 12 days between November 2010 and January 2011 with PEMs in four different types of urban areas in the cities of Basel (BSL) and Amsterdam (AMS). RESULTS: Exposure from mobile phone base stations ranged from 0.30 to 0.53 V/m in downtown and business areas and in residential areas from 0.09 to 0.41 V/m. Analysis of variance (ANOVA) demonstrated that measurements from various days were highly reproducible (measurement duration of approximately 30 min) with only 0.6% of the variance of all measurements from mobile phone base station radiation being explained by the measurement day and only 0.2% by the measurement time (morning, noon, afternoon), whereas type of area (30%) and city (50%) explained most of the data variability. CONCLUSIONS: We conclude that mobile monitoring of exposure from mobile phone base station radiation with PEMs is useful due to the high repeatability of mobile phone base station exposure levels, despite the high spatial variation.


Subject(s)
Cell Phone , Cities , Environmental Exposure/analysis , Radiation Monitoring/instrumentation , Radio Waves , Analysis of Variance , Netherlands , Radiation Monitoring/methods , Reproducibility of Results , Switzerland
4.
J Expo Sci Environ Epidemiol ; 23(5): 545-8, 2013.
Article in English | MEDLINE | ID: mdl-23093102

ABSTRACT

When moving around, mobile phones in stand-by mode periodically send data about their positions. The aim of this paper is to evaluate how personal radiofrequency electromagnetic field (RF-EMF) measurements are affected by such location updates. Exposure from a mobile phone handset (uplink) was measured during commuting by using a randomized cross-over study with three different scenarios: disabled mobile phone (reference), an activated dual-band phone and a quad-band phone. In the reference scenario, uplink exposure was highest during train rides (1.19 mW/m(2)) and lowest during car rides in rural areas (0.001 mW/m(2)). In public transports, the impact of one's own mobile phone on personal RF-EMF measurements was not observable because of high background uplink radiation from other people's mobile phone. In a car, uplink exposure with an activated phone was orders of magnitude higher compared with the reference scenario. This study demonstrates that personal RF-EMF exposure is affected by one's own mobile phone in stand-by mode because of its regular location update. Further dosimetric studies should quantify the contribution of location updates to the total RF-EMF exposure in order to clarify whether the duration of mobile phone use, the most common exposure surrogate in the epidemiological RF-EMF research, is actually an adequate exposure proxy.


Subject(s)
Cell Phone , Electromagnetic Radiation , Environmental Exposure , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...