Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(12): 14613-14626, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38559965

ABSTRACT

The synthesis of four 4-(carbazolyl-R-benzoyl)-5-CF3-1H-1,2,3-triazoles with extra groups ((3-methyl)-phenyl-, 4-fluorophenyl-, quinolinyl-, or (3-trifluoromethyl)-phenyl-) in the acceptor fragment has been reported. The effects of substituents with different electron-withdrawing strengths on the thermal, electrochemical, photophysical, and electroluminescence properties of the synthesized compounds are discussed. The results of X-ray analyses and density functional theory (DFT) calculations support unusual molecular packing and electronic properties. The compounds are capable of glass formation with glass transition temperatures ranging from 54-84 °C. Ionization potentials of the compounds are in the range of 5.98-6.22 eV and electron affinities range from 3.09 to 3.35 eV. Under ultraviolet excitation, the neat films of the compounds exhibit blue emission with photoluminescence quantum yields ranging from 18 to 27%. The films of selected compounds are used for the preparation of host-free light-emitting layers of organic light-emitting diodes with very simple device structures and an external quantum efficiency of 4.6%.

2.
Molecules ; 28(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37630259

ABSTRACT

We investigated the effects of sterically nonrestricted electron-accepting substituents of three isomeric indolocarbazole derivatives on their aggregation-induced emission enhancement, mechanochromic luminescence and thermally activated delayed fluorescence. The compounds are potentially efficient emitters for host-free organic light-emitting diodes. The films of indolocarbazole derivatives exhibit emissions with wavelengths of fluorescence intensity maxima from 483 to 500 nm and photoluminescence quantum yields from 31 to 58%. The ionization potentials of the solid samples, measured by photoelectron emission spectrometry, are in the narrow range of 5.78-5.99 eV. The electron affinities of the solid samples are in the range of 2.99-3.19 eV. The layers of the derivatives show diverse charge-transporting properties with maximum hole mobility reaching 10-4 cm2/Vs at high electric fields. An organic light-emitting diode with a light-emitting layer of neat compound shows a turn-on voltage of 4.1 V, a maximum brightness of 24,800 cd/m2, a maximum current efficiency of 12.5 cd/A and an external quantum efficiency of ca. 4.8%. When the compounds are used as hosts, green electroluminescent devices with an external quantum efficiency of ca. 11% are obtained. The linking topology of the isomeric derivatives of indolo[2,3-a]carbazole and indolo[3,2-b]carbazole and the electron-accepting anchors influences their properties differently, such as aggregation-induced emission enhancement, mechanochromic luminescence, thermally activated delayed fluorescence, charge-transporting, and electroluminescent properties. The derivative indolo[3,2-b]carbazole displays good light-emitting properties, while the derivatives of indolo[2,3-a]carbazole show good hosting properties, which make them useful for application in electroluminescent devices.

3.
Beilstein J Org Chem ; 16: 1142-1153, 2020.
Article in English | MEDLINE | ID: mdl-32550929

ABSTRACT

Three compounds, bearing a quinazoline unit as the acceptor core and carbazole, dimethyldihydroacridine, or phenothiazine donor moieties, were designed and synthesized in two steps including a facile copper-catalyzed cyclization and a nucleophilic aromatic substitution reaction. The photophysical properties of the compounds, based on theoretical calculations and experimental measurements, as well as the electrochemical and thermal properties, are discussed. The synthesized compounds form glasses with glass-transition temperatures ranging from 116 °C to 123 °C. The ionization potentials estimated by cyclic voltammetry of the derivatives were in the range of 5.22-5.87 eV. The 3,6-di-tert-butylcarbazole-substituted quinazoline-based compound forms a sky-blue emitting exciplex in solid mixture with the acceptor 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine as well as an orange emitting exciplex with the donor 4,4',4″-tris[3-methylphenyl(phenyl)amino]triphenylamine. A white OLED based on these versatile exciplex systems with a relatively high maximum brightness of 3030 cd/m2 and an external quantum efficiency of 0.5% was fabricated.

SELECTION OF CITATIONS
SEARCH DETAIL
...