Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 19(33): 21955-21963, 2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28678291

ABSTRACT

The electrochemical quartz-crystal nanobalance (EQCN) measures in situ mass changes associated with interfacial electrode processes. Real electrodes are not atomically flat, thus their surface roughness affects the conversion of frequency variations (Δf) to mass changes (Δm) associated with electrochemical processes. Here, we analyze Δm associated with the electrochemical H adsorption/desorption and surface oxide formation/reduction on Pt electrodes of gradually increasing surface roughness using the EQCN and cyclic-voltammetry in an aqueous H2SO4 solution. These two interfacial processes are ideal to probe changes in the electrochemically active surface area. The surface roughness of Pt-coated resonators is fine-tuned through Pt electrodeposition and examined using atomic force microscopy. The results acquired using Pt electrodes of increasing roughness factor (1.61 ≤ R ≤ 13.0) reveal a linear relationship between Δm and R. Extrapolation of this relationship to R = 1.00 leads to the determination of Δm associated with H adsorption/desorption and oxide formation/reduction on an atomically flat polycrystalline Pt electrode. The values of Δm associated with these processes are analyzed in terms of the number of H, O, water, and ionic species interacting with each Pt atom of the electrode surface. We find that the charge densities associated with these electrochemical processes and mass variations do not scale up by the same factor. This leads to a modified version of the Sauerbrey equation for Pt electrodes, which takes into account the intrinsic surface roughness.

2.
Phys Chem Chem Phys ; 16(48): 26876-86, 2014 Dec 28.
Article in English | MEDLINE | ID: mdl-25375887

ABSTRACT

In polymer electrolyte fuel cells a decrease in catalytic surface-area within the cathode catalyst layer is a critical barrier to commercialization. This loss in catalytic surface-area manifests as a loss in cell voltage and thus power density of the cell. It has been established that potential cycling accelerates the loss in catalytic surface-area yet isolating the contributing mechanisms as well as relating mechanisms to operating conditions is not as straightforward. We approach the issue of surface-area loss deconvolution with a combined experimental, modelling and theoretical framework. The methodology is based on the Lifshitz-Slyozov-Wagner and Smoluchowski theories of particle size distribution evolution. Electrochemical surface-area loss experiments probing upper potential limits of 0.9 and 1.2 V as well as temperatures from 298 to 343 K were analyzed with the model. A dissolution and redeposition mechanism was correlated with the measurements for both upper potential limits; however, at the upper potential limit of 1.2 V, ambiguity between the coagulation and the dissolution and redeposition mechanisms was found. Notwithstanding, the extracted dissolution and redeposition parameters aligned with independent studies on Pt dissolution whereas similar positive comparisons with independent results were unable to be made for the coagulation mechanism.

3.
Langmuir ; 28(36): 13094-104, 2012 Sep 11.
Article in English | MEDLINE | ID: mdl-22900584

ABSTRACT

The oxidative stripping of a saturation layer of CO(chem) was studied on platinum nanoparticles of high shape selectivity and narrow size distribution. Nanospheres, nanocubes, and nano-octahedrons were synthesized using the water-in-oil microemulsion or polyacrylate methods. The three shapes allowed examination of the CO(chem) stripping in relation to the geometry of the nanoparticles and presence of specific nanoscopic surface domains. Electrochemical quartz crystal nanobalance (EQCN) measurements provided evidence for the existence of more than one mechanism in the CO(chem) stripping. This was corroborated by chronoamperometry transient for a CO(chem) saturation layer at stripping potentials of E(strip) = 0.40, 0.50, 0.60, and 0.70 V. The first mechanism is operational in the case of CO(chem) stripping at lower E(strip) values; it proceeds without adsorption of anions or H(2)O molecules and corresponds to desorption of a fraction of CO(chem) in the form of a prepeak in voltammograms or in the form of an exponential decay in chrono-amperometry (CA) transients. The second mechanism is operational in the desorption of the remaining CO(chem) at higher E(strip) values and gives rise to at least two voltammetric peaks or two CA peaks. Analysis of the experimental data and modeling of the CA transients lead to the conclusion that the stripping of a saturation layer of CO(chem) first follows an Eley-Rideal mechanism in the early stage of the process and then a Langmuir-Hinshelwood mechanism.

4.
Langmuir ; 28(7): 3658-63, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22014064

ABSTRACT

An understanding of the oxidation of chemisorbed CO (CO(chem)) on Pt nanoparticle surfaces is of major importance to fuel cell technology. Here, we report on the relation between Pt nanoparticle surface structure and CO(chem) oxidative stripping behavior. Oxidative stripping voltammograms are obtained for CO(chem) preadsorbed on cubic, octahedral, and cuboctahedral Pt nanoparticles that possess preferentially oriented and atomically flat domains. They are compared to those obtained for etched and thermally treated Pt(poly) electrodes that possess atomically flat, ordered surface domains separated by grain boundaries as well as those obtained for spherical Pt nanoparticles. A detailed analysis of the results reveals for the first time the presence of up to four voltammetric features in CO(chem) oxidative stripping transients, a prepeak and three peaks, that are assigned to the presence of surface domains that are either preferentially oriented or disordered. The interpretation reported in this article allows one to explain all features within the voltammograms for CO(chem) oxidative stripping unambiguously.

5.
Langmuir ; 25(11): 6543-50, 2009 Jun 02.
Article in English | MEDLINE | ID: mdl-19382800

ABSTRACT

The effect of thiophenol layer grafted on carbon for platinum catalyst stabilization was studied. The grafted layer was prepared by reduction of 4-thiophenoldiazonium ions in the presence of Vulcan XC72 substrate. The grafted layer was characterized by elemental analysis, thermogravimetric analysis coupled with mass spectrometry, and X-ray photoelectron spectroscopy. Platinum nanoparticles prepared by the "water in oil" microemulsion method were then deposited on modified substrates and bare Vulcan XC72. The platinum stability improvement was characterized by in situ X-ray diffraction and electrochemical aging. These experiments enabled to evidence a lower crystallite growth during heat treatment under hydrogen atmosphere and a lower active surface area loss for platinum particles deposited on modified substrates compared to those deposited on bare Vulcan XC72. This stability improvement can be attributed to a better interaction between platinum particles and carbon substrate due to the thiophenol molecular bridge.

SELECTION OF CITATIONS
SEARCH DETAIL
...