Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
Front Bioeng Biotechnol ; 9: 821075, 2021.
Article in English | MEDLINE | ID: mdl-35071221

ABSTRACT

Among compatible solutes, glycine betaine has various applications in the fields of nutrition, pharmaceuticals, and cosmetics. Currently, this compound can be extracted from sugar beet plants or obtained by chemical synthesis, resulting in low yields or high carbon footprint, respectively. Hence, in this work we aimed at exploring the production of glycine betaine using the unicellular cyanobacterium Synechocystis sp. PCC 6803 as a photoautotrophic chassis. Synechocystis mutants lacking the native compatible solutes sucrose or/and glucosylglycerol-∆sps, ∆ggpS, and ∆sps∆ggpS-were generated and characterized. Under salt stress conditions, the growth was impaired and accumulation of glycogen decreased by ∼50% whereas the production of compatible solutes and extracellular polymeric substances (capsular and released ones) increased with salinity. These mutants were used as chassis for the implementation of a synthetic device based on the metabolic pathway described for the halophilic cyanobacterium Aphanothece halophytica for the production of the compatible solute glycine betaine. Transcription of ORFs comprising the device was shown to be stable and insulated from Synechocystis' native regulatory network. Production of glycine betaine was achieved in all chassis tested, and was shown to increase with salinity. The introduction of the glycine betaine synthetic device into the ∆ggpS background improved its growth and enabled survival under 5% NaCl, which was not observed in the absence of the device. The maximum glycine betaine production [64.29 µmol/gDW (1.89 µmol/mg protein)] was reached in the ∆ggpS chassis grown under 3% NaCl. Taking into consideration this production under seawater-like salinity, and the identification of main key players involved in the carbon fluxes, this work paves the way for a feasible production of this, or other compatible solutes, using optimized Synechocystis chassis in a pilot-scale.

2.
Photosynth Res ; 147(1): 75-90, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33245462

ABSTRACT

In this work, we reconstructed the absorption spectrum of different Synechocystis sp. PCC 6803 optical strains by summing the computed signature of all pigments present in this organism. To do so, modifications to in vitro pigment spectra were first required: namely wavelength shift, curve smoothing, and the package effect calculation derived from high pigment densities were applied. As a result, we outlined a plausible shape for the in vivo absorption spectrum of each chromophore. These are flatter and slightly broader in physiological conditions yet the mean weight-specific absorption coefficient remains identical to the in vitro conditions. Moreover, we give an estimate of all pigment concentrations without applying spectrophotometric correlations, which are often prone to error. The computed cell spectrum reproduces in an accurate manner the experimental spectrum for all the studied wavelengths in the wild-type, Olive, and PAL strain. The gathered pigment concentrations are in agreement with reported values in literature. Moreover, different illumination set-ups were evaluated to calculate the mean absorption cross-section of each chromophore. Finally, a qualitative estimate of light-limited cellular growth at each wavelength is given. This investigation describes a novel way to approach the cell absorption spectrum and shows all its inherent potential for photosynthesis research.


Subject(s)
Photosynthesis , Pigments, Biological/analysis , Synechocystis/physiology , Mutation , Pigments, Biological/metabolism , Spectrophotometry , Synechocystis/genetics , Synechocystis/radiation effects
3.
Plant Signal Behav ; 15(10): 1795580, 2020 10 02.
Article in English | MEDLINE | ID: mdl-32686612

ABSTRACT

Electric potential differences in living plants are explained by theories based on sap flow. In order to acquire more advanced knowledge about the spatial distribution of these electric potential measures in trees, this research aims to analyze electrical signals in a population of Aleppo pines (Pinus halepensis Mill.) in a representative Mediterranean forest ecosystem. The specific research objective is to assess some of the most significant factors that influence the distribution pattern of those electric signals: tree age, measurement type and electrode placement. The research has been conducted in representative forest stands, obtaining measurements of different representative trees. After a statistical evaluation of the obtained results, the main conclusions of our research are: A.Tree maturity influences directly on electric potential. B.Maximum electrical signals can be measured in young pines showing values of 0.6 V and 0.6 µA for voltage and current, respectively. C.The distribution patterns of both voltage and short-circuit current depending on electrode placement are uniform.


Subject(s)
Ecosystem , Pinus/metabolism , Forests
4.
PLoS One ; 14(9): e0221631, 2019.
Article in English | MEDLINE | ID: mdl-31487289

ABSTRACT

Dendrograms are a way to represent relationships between organisms. Nowadays, these are inferred based on the comparison of genes or protein sequences by taking into account their differences and similarities. The genetic material of choice for the sequence alignments (all the genes or sets of genes) results in distinct inferred dendrograms. In this work, we evaluate differences between dendrograms reconstructed with different methodologies and for different sets of organisms chosen at random from a much larger set. A statistical analysis is performed to estimate fluctuations between the results obtained from the different methodologies that allows us to validate a systematic approach, based on the comparison of the organisms' metabolic networks for inferring dendrograms. This has the advantage that it allows the comparison of organisms very far away in the evolutionary tree even if they have no known ortholog gene in common. Our results show that dendrograms built using information from metabolic networks are similar to the standard sequence-based dendrograms and can be a complement to them.


Subject(s)
Algorithms , Computational Biology/methods , Gene Regulatory Networks , Proteins/classification , Sequence Alignment/methods , Animals , Databases, Factual , Humans , Models, Molecular , Phylogeny , Proteins/genetics , Proteins/metabolism , Sequence Analysis, Protein
5.
Curr Med Imaging Rev ; 15(10): 933-947, 2019.
Article in English | MEDLINE | ID: mdl-32008521

ABSTRACT

PURPOSE: To systematically review evidence regarding the association of multiparametric biomarkers with clinical outcomes and their capacity to explain relevant subcompartments of gliomas. MATERIALS AND METHODS: Scopus database was searched for original journal papers from January 1st, 2007 to February 20th, 2017 according to PRISMA. Four hundred forty-nine abstracts of papers were reviewed and scored independently by two out of six authors. Based on those papers we analyzed associations between biomarkers, subcompartments within the tumor lesion, and clinical outcomes. From all the articles analyzed, the twenty-seven papers with the highest scores were highlighted to represent the evidence about MR imaging biomarkers associated with clinical outcomes. Similarly, eighteen studies defining subcompartments within the tumor region were also highlighted to represent the evidence of MR imaging biomarkers. Their reports were critically appraised according to the QUADAS-2 criteria. RESULTS: It has been demonstrated that multi-parametric biomarkers are prepared for surrogating diagnosis, grading, segmentation, overall survival, progression-free survival, recurrence, molecular profiling and response to treatment in gliomas. Quantifications and radiomics features obtained from morphological exams (T1, T2, FLAIR, T1c), PWI (including DSC and DCE), diffusion (DWI, DTI) and chemical shift imaging (CSI) are the preferred MR biomarkers associated to clinical outcomes. Subcompartments relative to the peritumoral region, invasion, infiltration, proliferation, mass effect and pseudo flush, relapse compartments, gross tumor volumes, and highrisk regions have been defined to characterize the heterogeneity. For the majority of pairwise cooccurrences, we found no evidence to assert that observed co-occurrences were significantly different from their expected co-occurrences (Binomial test with False Discovery Rate correction, α=0.05). The co-occurrence among terms in the studied papers was found to be driven by their individual prevalence and trends in the literature. CONCLUSION: Combinations of MR imaging biomarkers from morphological, PWI, DWI and CSI exams have demonstrated their capability to predict clinical outcomes in different management moments of gliomas. Whereas morphologic-derived compartments have been mostly studied during the last ten years, new multi-parametric MRI approaches have also been proposed to discover specific subcompartments of the tumors. MR biomarkers from those subcompartments show the local behavior within the heterogeneous tumor and may quantify the prognosis and response to treatment of gliomas.


Subject(s)
Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Glioma/therapy , Magnetic Resonance Imaging/methods , Adult , Bias , Biomarkers, Tumor , Brain Edema/diagnostic imaging , Brain Neoplasms/chemistry , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Cross-Sectional Studies/statistics & numerical data , Glioma/chemistry , Glioma/pathology , Humans , Multiparametric Magnetic Resonance Imaging/methods , Neoplasm Invasiveness , Neoplasm Recurrence, Local , Patient Outcome Assessment , Retrospective Studies , Treatment Outcome , Tumor Burden
6.
DNA Res ; 22(6): 425-37, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26490728

ABSTRACT

The use of microorganisms as cell factories frequently requires extensive molecular manipulation. Therefore, the identification of genomic neutral sites for the stable integration of ectopic DNA is required to ensure a successful outcome. Here we describe the genome mapping and validation of five neutral sites in the chromosome of Synechocystis sp. PCC 6803, foreseeing the use of this cyanobacterium as a photoautotrophic chassis. To evaluate the neutrality of these loci, insertion/deletion mutants were produced, and to assess their functionality, a synthetic green fluorescent reporter module was introduced. The constructed integrative vectors include a BioBrick-compatible multiple cloning site insulated by transcription terminators, constituting robust cloning interfaces for synthetic biology approaches. Moreover, Synechocystis mutants (chassis) ready to receive purpose-built synthetic modules/circuits are also available. This work presents a systematic approach to map and validate chromosomal neutral sites in cyanobacteria, and that can be extended to other organisms.


Subject(s)
Cyanobacteria/genetics , Synechocystis/genetics , Autotrophic Processes , Chromosome Mapping , Cyanobacteria/growth & development , Green Fluorescent Proteins , Mutation , Synthetic Biology/methods
7.
Crit Rev Biotechnol ; 35(2): 184-98, 2015 Jun.
Article in English | MEDLINE | ID: mdl-24090244

ABSTRACT

In the present economy, difficulties to access energy sources are real drawbacks to maintain our current lifestyle. In fact, increasing interests have been gathered around efficient strategies to use energy sources that do not generate high CO2 titers. Thus, science-funding agencies have invested more resources into research on hydrogen among other biofuels as interesting energy vectors. This article reviews present energy challenges and frames it into the present fuel usage landscape. Different strategies for hydrogen production are explained and evaluated. Focus is on biological hydrogen production; fermentation and photon-fuelled hydrogen production are compared. Mathematical models in biology can be used to assess, explore and design production strategies for industrially relevant metabolites, such as biofuels. We assess the diverse construction and uses of genome-scale metabolic models of cyanobacterium Synechocystis sp. PCC6803 to efficiently obtain biofuels. This organism has been studied as a potential photon-fuelled production platform for its ability to grow from carbon dioxide, water and photons, on simple culture media. Finally, we review studies that propose production strategies to weigh this organism's viability as a biofuel production platform. Overall, the work presented in this review unveils the industrial capabilities of cyanobacterium Synechocystis sp. PCC6803 to evolve interesting metabolites as a clean biofuel production platform.


Subject(s)
Biofuels , Biotechnology/methods , Hydrogen/metabolism , Models, Biological , Synechocystis/metabolism , Systems Biology
8.
Metabolites ; 4(3): 680-98, 2014 Aug 20.
Article in English | MEDLINE | ID: mdl-25141288

ABSTRACT

The reconstruction of genome-scale metabolic models and their applications represent a great advantage of systems biology. Through their use as metabolic flux simulation models, production of industrially-interesting metabolites can be predicted. Due to the growing number of studies of metabolic models driven by the increasing genomic sequencing projects, it is important to conceptualize steps of reconstruction and analysis. We have focused our work in the cyanobacterium Synechococcus elongatus PCC7942, for which several analyses and insights are unveiled. A comprehensive approach has been used, which can be of interest to lead the process of manual curation and genome-scale metabolic analysis. The final model, iSyf715 includes 851 reactions and 838 metabolites. A biomass equation, which encompasses elementary building blocks to allow cell growth, is also included. The applicability of the model is finally demonstrated by simulating autotrophic growth conditions of Synechococcus elongatus PCC7942.

9.
J Comput Biol ; 21(7): 508-19, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24611553

ABSTRACT

A wide range of applications and research has been done with genome-scale metabolic models. In this work, we describe an innovative methodology for comparing metabolic networks constructed from genome-scale metabolic models and how to apply this comparison in order to infer evolutionary distances between different organisms. Our methodology allows a quantification of the metabolic differences between different species from a broad range of families and even kingdoms. This quantification is then applied in order to reconstruct phylogenetic trees for sets of various organisms.


Subject(s)
Algorithms , Bacteria/classification , Bacteria/metabolism , Computational Biology/methods , Genome, Bacterial , Metabolic Networks and Pathways , Phylogeny , Bacteria/genetics , Evolution, Molecular
10.
J Mol Microbiol Biotechnol ; 22(2): 71-82, 2012.
Article in English | MEDLINE | ID: mdl-22508451

ABSTRACT

BACKGROUND/AIMS: The influence of different parameters such as temperature, irradiance, nitrate concentration, pH, and an external carbon source on Synechocystis PCC 6803 growth was evaluated. METHODS: 4.5-ml cuvettes containing 2 ml of culture, a high-throughput system equivalent to batch cultures, were used with gas exchange ensured by the use of a Parafilm™ cover. The effect of the different variables on maximum growth was assessed by a multi-way statistical analysis. RESULTS: Temperature and pH were identified as the key factors. It was observed that Synechocystis cells have a strong influence on the external pH. The optimal growth temperature was 33°C while light-saturating conditions were reached at 40 µE·m⁻²·s⁻¹. CONCLUSION: It was demonstrated that Synechocystis exhibits a marked difference in behavior between autotrophic and glucose-based mixotrophic conditions, and that nitrate concentrations did not have a significant influence, probably due to endogenous nitrogen reserves. Furthermore, a dynamic metabolic model of Synechocystis photosynthesis was developed to gain insights on the underlying mechanism enabling this cyanobacterium to control the levels of external pH. The model showed a coupled effect between the increase of the pH and ATP production which in turn allows a higher carbon fixation rate.


Subject(s)
Autotrophic Processes , Batch Cell Culture Techniques/methods , Models, Biological , Synechocystis/growth & development , Bacteriological Techniques/methods , Bacteriological Techniques/standards , Carbon/metabolism , Heterotrophic Processes , Hydrogen-Ion Concentration , Light , Microbial Viability , Multivariate Analysis , Nitrates/metabolism , Photosynthesis , Synechocystis/metabolism , Temperature
11.
Microbiology (Reading) ; 158(Pt 2): 448-464, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22096147

ABSTRACT

Cyanobacteria are photosynthetic prokaryotes that are promising 'low-cost' microbial cell factories due to their simple nutritional requirements and metabolic plasticity, and the availability of tools for their genetic manipulation. The unicellular non-nitrogen-fixing Synechocystis sp. PCC 6803 is the best studied cyanobacterial strain and its genome was the first to be sequenced. The vast amount of physiological and molecular data available, together with a relatively small genome, makes Synechocystis suitable for computational metabolic modelling and to be used as a photoautotrophic chassis in synthetic biology applications. To prepare it for the introduction of a synthetic hydrogen producing device, a Synechocystis sp. PCC 6803 deletion mutant lacking an active bidirectional hydrogenase (ΔhoxYH) was produced and characterized at different levels: physiological, proteomic and transcriptional. The results showed that, under conditions favouring hydrogenase activity, 17 of the 210 identified proteins had significant differential fold changes in comparisons of the mutant with the wild-type. Most of these proteins are related to the redox and energy state of the cell. Transcriptional studies revealed that only six genes encoding those proteins exhibited significant differences in transcript levels. Moreover, the mutant exhibits similar growth behaviour compared with the wild-type, reflecting Synechocystis plasticity and metabolic adaptability. Overall, this study reveals that the Synechocystis ΔhoxYH mutant is robust and can be used as a photoautotrophic chassis for the integration of synthetic constructs, i.e. molecular constructs assembled from well characterized biological and/or synthetic parts (e.g. promoters, regulators, coding regions, terminators) designed for a specific purpose.


Subject(s)
Bacterial Proteins/metabolism , Hydrogen/metabolism , Hydrogenase/metabolism , Synechocystis/enzymology , Synechocystis/genetics , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Hydrogenase/genetics , Mutation , Synechocystis/metabolism
12.
PLoS One ; 6(6): e21751, 2011.
Article in English | MEDLINE | ID: mdl-21738787

ABSTRACT

BACKGROUND: Insects are associated with microorganisms that contribute to the digestion and processing of nutrients. The European Corn Borer (ECB) is a moth present world-wide, causing severe economical damage as a pest on corn and other crops. In the present work, we give a detailed view of the complexity of the microorganisms forming the ECB midgut microbiota with the objective of comparing the biodiversity of the midgut-associated microbiota and explore their potential as a source of genes and enzymes with biotechnological applications. METHODOLOGICAL/PRINCIPAL FINDINGS: A high-throughput sequencing approach has been used to identify bacterial species, genes and metabolic pathways, particularly those involved in plant-matter degradation, in two different ECB populations (field-collected vs. lab-reared population with artificial diet). Analysis of the resulting sequences revealed the massive presence of Staphylococcus warneri and Weissella paramesenteroides in the lab-reared sample. This enabled us to reconstruct both genomes almost completely. Despite the apparently low diversity, 208 different genera were detected in the sample, although most of them at very low frequency. By contrast, the natural population exhibited an even higher taxonomic diversity along with a wider array of cellulolytic enzyme families. However, in spite of the differences in relative abundance of major taxonomic groups, not only did both metagenomes share a similar functional profile but also a similar distribution of non-redundant genes in different functional categories. CONCLUSIONS/SIGNIFICANCE: Our results reveal a highly diverse pool of bacterial species in both O. nubilalis populations, with major differences: The lab-reared sample is rich in gram-positive species (two of which have almost fully sequenced genomes) while the field sample harbors mainly gram-negative species and has a larger set of cellulolytic enzymes. We have found a clear relationship between the diet and the midgut microbiota, which reveals the selection pressure of food on the community of intestinal bacteria.


Subject(s)
Bacteria/isolation & purification , Moths/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Phylogeny
13.
J Biotechnol ; 152(3): 93-5, 2011 Mar 20.
Article in English | MEDLINE | ID: mdl-21291926

ABSTRACT

In this study, we show the use of direct external electrical stimulation of a jellyfish luminescent calcium-activated protein, aequorin, expressed in a transgenic yeast strain. Yeast cultures were electrically stimulated through two electrodes coupled to a standard power generator. Even low (1.5 V) electric pulses triggered a rapid light peak and serial light pulses were obtained after electric pulses were applied periodically, suggesting that the system is re-enacted after a short refraction time. These results open up a new scenario, in the very interphase between synthetic biology and cybernetics, in which complex cellular behavior might be subjected to electrical control.


Subject(s)
Aequorin/metabolism , Electricity , Light , Saccharomyces cerevisiae/metabolism , Electric Stimulation , Genetic Engineering , Hydroxides/pharmacology , Potassium Compounds/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development
14.
Biotechnol J ; 6(3): 330-42, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21226012

ABSTRACT

Synechocystis sp. PCC6803 is a model cyanobacterium capable of producing biofuels with CO(2) as carbon source and with its metabolism fueled by light, for which it stands as a potential production platform of socio-economic importance. Compilation and characterization of Synechocystis genome-scale metabolic model is a pre-requisite toward achieving a proficient photosynthetic cell factory. To this end, we report iSyn811, an upgraded genome-scale metabolic model of Synechocystis sp. PCC6803 consisting of 956 reactions and accounting for 811 genes. To gain insights into the interplay between flux activities and metabolic physiology, flux coupling analysis was performed for iSyn811 under four different growth conditions, viz., autotrophy, mixotrophy, heterotrophy, and light-activated heterotrophy (LH). Initial steps of carbon acquisition and catabolism formed the versatile center of the flux coupling networks, surrounded by a stable core of pathways leading to biomass building blocks. This analysis identified potential bottlenecks for hydrogen and ethanol production. Integration of transcriptomic data with the Synechocystis flux coupling networks lead to identification of reporter flux coupling pairs and reporter flux coupling groups - regulatory hot spots during metabolic shifts triggered by the availability of light. Overall, flux coupling analysis provided insight into the structural organization of Synechocystis sp. PCC6803 metabolic network toward designing of a photosynthesis-based production platform.


Subject(s)
Carbon Cycle , Ethanol/metabolism , Synechocystis/genetics , Synechocystis/metabolism , Transcription, Genetic , Hydrogen/metabolism , Metabolic Networks and Pathways/genetics , Photosynthesis/genetics
15.
BMC Syst Biol ; 4: 156, 2010 Nov 17.
Article in English | MEDLINE | ID: mdl-21083885

ABSTRACT

BACKGROUND: Synechocystis sp. PCC6803 is a cyanobacterium considered as a candidate photo-biological production platform--an attractive cell factory capable of using CO2 and light as carbon and energy source, respectively. In order to enable efficient use of metabolic potential of Synechocystis sp. PCC6803, it is of importance to develop tools for uncovering stoichiometric and regulatory principles in the Synechocystis metabolic network. RESULTS: We report the most comprehensive metabolic model of Synechocystis sp. PCC6803 available, iSyn669, which includes 882 reactions, associated with 669 genes, and 790 metabolites. The model includes a detailed biomass equation which encompasses elementary building blocks that are needed for cell growth, as well as a detailed stoichiometric representation of photosynthesis. We demonstrate applicability of iSyn669 for stoichiometric analysis by simulating three physiologically relevant growth conditions of Synechocystis sp. PCC6803, and through in silico metabolic engineering simulations that allowed identification of a set of gene knock-out candidates towards enhanced succinate production. Gene essentiality and hydrogen production potential have also been assessed. Furthermore, iSyn669 was used as a transcriptomic data integration scaffold and thereby we found metabolic hot-spots around which gene regulation is dominant during light-shifting growth regimes. CONCLUSIONS: iSyn669 provides a platform for facilitating the development of cyanobacteria as microbial cell factories.


Subject(s)
Genome, Bacterial , Genomics/methods , Models, Biological , Photosynthesis/genetics , Synechocystis/genetics , Synechocystis/metabolism , Autotrophic Processes/genetics , Biomass , Darkness , Gene Expression Profiling , Gene Knockout Techniques , Genes, Bacterial/genetics , Synechocystis/growth & development , Synechocystis/radiation effects
16.
N Biotechnol ; 26(6): 300-6, 2009 Dec 31.
Article in English | MEDLINE | ID: mdl-19761877

ABSTRACT

Uncoupling proteins (UCPs) are mitochondrial transporters that facilitate controlled dissipation of the proton gradient and thus regulate energetic efficiency. The heat generating capacity of UCP from brown adipose tissue was investigated in yeasts expressing the protein recombinantly under conditions in which the temperature of the growth medium was measured directly. A Liquid Culture Calorimeter (LCC) was built consisting of a thermally isolated culture flask able to keep yeast cultures warm without resorting to additional heating. The exact internal temperature of the cultures was monitored for 24h through a thermocouple connected to a data logger. Under these conditions, significant temperature increases (1 degrees C) in the media were recorded when yeast strains expressing endogenously active UCP1 mutants were grown. This is the first direct evidence, in a eukaryotic microbial model, of a temperature rise associated with uncoupling activity, and could be seen as the first step toward developing a biological heating device.


Subject(s)
Calorimetry/instrumentation , Ion Channels/metabolism , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Calibration , Cell Proliferation , Kinetics , Mutation/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Temperature , Uncoupling Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL