Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Cells ; 11(14)2022 07 13.
Article in English | MEDLINE | ID: mdl-35883635

ABSTRACT

The nuclear lamina is a complex meshwork of intermediate filaments (lamins) that is located beneath the inner nuclear membrane and the surrounding nucleoplasm. The lamins exert both structural and functional roles in the nucleus and, by interacting with several nuclear proteins, are involved in a wide range of nuclear and cellular activities. Due their pivotal roles in basic cellular processes, lamin gene mutations, or modulations in lamin expression, are often associated with pathological conditions, ranging from rare genetic diseases, such as laminopathies, to cancer. Although a substantial amount of literature describes the effects that are mediated by the deregulation of nuclear lamins, some apparently controversial results have been reported, which may appear to conflict with each other. In this context, we herein provide our explanation of such "controversy", which, in our opinion, derives from the tissue-specific expression of nuclear lamins and their close correlation with mechanotransduction processes, which could be very different, or even opposite, depending on the specific mechanical conditions that should not be compared (a tissue vs. another tissue, in vivo studies vs. cell cultures on glass/plastic supports, etc.). Moreover, we have stressed the relevance of considering and reproducing the "mechano-environment" in in vitro experimentation. Indeed, when primary cells that are collected from patients or donors are maintained in a culture, the mechanical signals deriving from canonical experimental procedures of cell culturing could alter the lamin expression, thereby profoundly modifying the assessed cell type, in some cases even too much, compared to the cell of origin.


Subject(s)
Lamins , Mechanotransduction, Cellular , Humans , Intermediate Filaments/metabolism , Lamins/metabolism , Mechanotransduction, Cellular/genetics , Mechanotransduction, Cellular/physiology , Nuclear Lamina/metabolism
2.
Sensors (Basel) ; 22(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35746165

ABSTRACT

The measurement of biological tissues' dielectric properties plays a crucial role in determining the state of health, and recent studies have reported microwave biosensing to be an innovative method with great potential in this field. Research has been conducted from the tissue level to the cellular level but, to date, cellular adhesion has never been considered. In addition, conventional systems for diagnosing tumor aggressiveness, such as a biopsy, are rather expensive and invasive. Here, we propose a novel microwave approach for biosensing adherent cancer cells with different malignancy degrees. A circular patch resonator was designed adjusting its structure to a standard Petri dish and a network analyzer was employed. Then, the resonator was realized and used to test two groups of different cancer cell lines, based on various tumor types and aggressiveness: low- and high-aggressive osteosarcoma cell lines (SaOS-2 and 143B, respectively), and low- and high-aggressive breast cancer cell lines (MCF-7 and MDA-MB-231, respectively). The experimental results showed that the sensitivity of the sensor was high, in particular when measuring the resonant frequency. Finally, the sensor showed a good ability to distinguish low-metastatic and high-metastatic cells, paving the way to the development of more complex measurement systems for noninvasive tissue diagnosis.


Subject(s)
Microwaves , Neoplasms , Cell Adhesion , Humans , MCF-7 Cells
3.
Int J Mol Sci ; 24(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36613885

ABSTRACT

Excess body weight has been considered beneficial to bone health because of its anabolic effect on bone formation; however, this results in a poor quality bone structure. In this context, we evaluated the involvement of circulating extracellular vesicles in the impairment of the bone phenotype associated with obesity. Circulating extracellular vesicles were collected from the plasma of participants with normal weight, as well as overweight and obese participants, quantified by flow cytometry analysis and used to treat mesenchymal stromal cells and osteoblasts to assess their effect on cell differentiation and activity. Children with obesity had the highest amount of circulating extracellular vesicles compared to controls. The treatment of mesenchymal stromal cells with extracellular vesicles from obese participants led to an adipogenic differentiation in comparison to vesicles from controls. Mature osteoblasts treated with extracellular vesicles from obese participants showed a reduction in differentiation markers in comparison to controls. Children with obesity who regularly performed physical exercise had a lower circulating extracellular vesicle amount in comparison to those with a sedentary lifestyle. This pilot study demonstrates how the high amount of circulating extracellular vesicles in children with obesity affects the bone phenotype and that physical activity can partially rescue this phenotype.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Pediatric Obesity , Humans , Osteogenesis , Pilot Projects , Cell Differentiation , Adipogenesis , Osteoblasts , Cells, Cultured
4.
Front Cell Dev Biol ; 9: 789674, 2021.
Article in English | MEDLINE | ID: mdl-34950663

ABSTRACT

The bone microenvironment homeostasis is guaranteed by the balanced and fine regulated bone matrix remodeling process. This equilibrium can be disrupted by cancer cells developed in the bone (primary bone cancers) or deriving from other tissues (bone metastatic lesions), through a mechanism by which they interfere with bone cells activities and alter the microenvironment both biochemically and mechanically. Among the factors secreted by cancer cells and by cancer-conditioned bone cells, extracellular vesicles (EVs) are described to exert pivotal roles in the establishment and the progression of bone cancers, by conveying tumorigenic signals targeting and transforming normal cells. Doing this, EVs are also responsible in modulating the production of proteins involved in regulating matrix stiffness and/or mechanotransduction process, thereby altering the bone mechanoenvironment. In turn, bone and cancer cells respond to deregulated matrix stiffness by modifying EV production and content, fueling the vicious cycle established in tumors. Here, we summarized the relationship between EVs and the mechanoenvironment during tumoral progression, with the final aim to provide some innovative perspectives in counteracting bone cancers.

5.
Front Cell Dev Biol ; 9: 712377, 2021.
Article in English | MEDLINE | ID: mdl-34595168

ABSTRACT

Besides its structural properties in the nucleoskeleton, Lamin A/C is a mechanosensor protein involved in perceiving the elasticity of the extracellular matrix. In this study we provide evidence about Lamin A/C-mediated regulation of osteosarcoma cell adhesion and spreading on substrates with tissue-specific elasticities. Our working hypothesis is based on the observation that low-aggressive and bone-resident SaOS-2 osteosarcoma cells express high level of Lamin A/C in comparison to highly metastatic, preferentially to the lung, osteosarcoma 143B cells, thereby suggesting a role for Lamin A/C in tumor cell tropism. Specifically, LMNA gene over-expression in 143B cells induced a reduction in tumor cell aggressiveness in comparison to parental cells, with decreased proliferation rate and reduced migration capability. Furthermore, LMNA reintegration into 143B cells changed the adhesion properties of tumor cells, from a preferential tropism toward the 1.5 kPa PDMS substrate (resembling normal lung parenchyma) to the 28 kPa (resembling pre-mineralized bone osteoid matrix). Our study suggests that Lamin A/C expression could be involved in the organ tropism of tumor cells, thereby providing a rationale for further studies focused on the definition of cancer mechanism of metastatization.

6.
Int J Mol Sci ; 21(24)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33322030

ABSTRACT

Mechanotransduction is a physiological process in which external mechanical stimulations are perceived, interpreted, and translated by cells into biochemical signals. Mechanical stimulations exerted by extracellular matrix stiffness and cell-cell contacts are continuously applied to living cells, thus representing a key pivotal trigger for cell homeostasis, survival, and function, as well as an essential factor for proper organ development and metabolism. Indeed, a deregulation of the mechanotransduction process consequent to gene mutations or altered functions of proteins involved in perceiving cellular and extracellular mechanics can lead to a broad range of diseases, from muscular dystrophies and cardiomyopathies to cancer development and metastatization. Here, we recapitulate the involvement of focal adhesion kinase (FAK) in the cellular conditions deriving from altered mechanotransduction processes.


Subject(s)
Bone Diseases/metabolism , Cardiomyopathies/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Mechanotransduction, Cellular , Animals , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Humans
8.
J Cell Commun Signal ; 14(4): 417-426, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32583269

ABSTRACT

Cancer cells are able to release high amounts of extracellular vesicles, thereby conditioning the normal cells in the surrounding tissue and/or in distant target organs. In the context of bone cancers, previous studies suggested that osteosarcoma cancer cells produce transforming extracellular vesicles able to induce a tumour-like phenotype in normal recipient cells. Indeed, phosphoinositide-specific phospholipase C (PI-PLC) enzymes are differentially expressed in osteosarcoma cell lines with increasing aggressiveness, thus providing helpful insights to better define their role and functions in this bone tumour. By confocal microscopy analysis, we demonstrated that osteosarcoma-derived extracellular vesicles convey all the assessed PI-PLC isoforms, and that they localize into cell membrane bubble-like structures, resembling extracellular vesicles about to be released, as conveyed and/or membrane protein. Cytofluorimetric analysis confirmed the presence of PI-PLC isoforms in the extracellular vesicles collected from conditioned media of osteosarcoma cells. These findings suggest the feasibility to use circulating extracellular vesicles as biomarkers of osteosarcoma progression and/or the monitoring of this distressing disease.

9.
Int J Mol Sci ; 21(8)2020 Apr 11.
Article in English | MEDLINE | ID: mdl-32290470

ABSTRACT

Src is the representative member of the Src-family kinases (SFKs), a group of tyrosine kinases involved in several cellular processes. Its main function has been for long confined to the plasma membrane/cytoplasm compartment, being a myristoylated protein anchored to the cell membrane and functioning downstream to receptors, most of them lacking intrinsic kinase activity. In the last decades, new roles for some SFKs have been described in the nuclear compartment, suggesting that these proteins can also be involved in directly regulating gene transcription or nucleoskeleton architecture. In this review, we focused on those nuclear functions specifically attributable to Src, by considering its function as both tyrosine kinase and adapting molecule. In particular, we addressed the Src involvement in physiological as well as in pathological conditions, especially in tumors.


Subject(s)
Cell Nucleus/metabolism , src-Family Kinases/metabolism , Animals , Humans , Intracellular Space/metabolism , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Transport , Tyrosine/metabolism , src-Family Kinases/chemistry , src-Family Kinases/genetics
10.
Cancers (Basel) ; 12(2)2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32069980

ABSTRACT

The nuclear lamina is essential for the maintenance of nuclear shape and mechanics. Mutations in lamin genes have been identified in a heterogeneous spectrum of human diseases known as "laminopathies" associated with nuclear envelope defects and deregulation of cellular functions. Interestingly, osteosarcoma is the only neoplasm described in the literature in association with laminopathies. This study aims characterized the expression of A-type and B-type lamins and emerin in osteosarcoma, revealing a higher percentage of dysmorphic nuclei in osteosarcoma cells in comparison to normal osteoblasts and all the hallmarks of laminopathic features. Both lamins and emerin were differentially expressed in osteosarcoma cell lines in comparison to normal osteoblasts and correlated with tumor aggressiveness. We analysed lamin A/C expression in a tissue-microarray including osteosarcoma samples with different prognosis, finding a positive correlation between lamin A/C expression and the overall survival of osteosarcoma patients. An inefficient MKL1 nuclear shuttling and actin depolymerization, as well as a reduced expression of pRb and a decreased YAP nuclear content were observed in A-type lamin deficient 143B cells. In conclusion, we described for the first time laminopathic nuclear phenotypes in osteosarcoma cells, providing evidence for an altered lamins and emerin expression and a deregulated nucleoskeleton architecture of this tumor.

11.
Sensors (Basel) ; 19(23)2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31766596

ABSTRACT

In this paper, the characterization of the main techniques and transducers employed to measure local and global strains induced by uniaxial loading of murine tibiae is presented. Micro strain gauges and digital image correlation (DIC) were tested to measure local strains, while a moving coil motor-based length transducer was employed to measure relative global shortening. Local strain is the crucial parameter to be measured when dealing with bone cell mechanotransduction, so we characterized these techniques in the experimental conditions known to activate cell mechanosensing in vivo. The experimental tests were performed using tibia samples excised from twenty-two C57BL/6 mice. To evaluate measurement repeatability we computed the standard deviation of ten repetitive compressions to the mean value. This value was lower than 3% for micro strain gauges, and in the range of 7%-10% for DIC and the length transducer. The coefficient of variation, i.e., the standard deviation to the mean value, was about 35% for strain gauges and the length transducer, and about 40% for DIC. These results provided a comprehensive characterization of three methodologies for local and global bone strain measurement, suggesting a possible field of application on the basis of their advantages and limitations.


Subject(s)
Tibia/physiology , Animals , Biomechanical Phenomena/physiology , Mechanotransduction, Cellular/physiology , Mice , Mice, Inbred C57BL , Stress, Mechanical , Transducers , Weight-Bearing/physiology
12.
J Cell Physiol ; 233(8): 6158-6172, 2018 08.
Article in English | MEDLINE | ID: mdl-29323709

ABSTRACT

Osteosarcoma is the most common primary bone cancer and the most frequent cause of bone cancer-related deaths in children and adolescents. Osteosarcoma cells are able to establish a crosstalk with resident bone cells leading to the formation of a deleterious vicious cycle. We hypothesized that osteosarcoma cells can release, in the bone microenvironment, transforming Extracellular Vesicles (EVs) involved in regulating bone cell proliferation and differentiation, thereby promoting tumor growth. We assessed EV production by three osteosarcoma cell lines with increasing aggressiveness in order to investigate their roles in the communication between osteosarcoma cells and normal recipient cells. Osteosarcoma-derived EVs were used to treat the murine fibroblast cell line NIH3T3 and to study the induction of tumor-like phenotypes. Our results showed that osteosarcoma cell lines are able to produce EVs that fuse to recipient cells, with a very high uptake efficiency. The treatment of recipient NIH3T3 with osteosarcoma-derived EVs induced substantial biological and functional effects, as an enhanced proliferation and survival capability under starved conditions, high levels of activated survival pathways, an increased migration, adhesion, and 3D sphere formation and the acquired capability to grow in an anchorage-independent manner. Moreover, in murine NIH3T3 we found human mRNAs of TNF-α, IL-6, and TGF-ß, as well as a de novo expression of murine MMP-9 and TNF-α following the treatment of human osteosarcoma-derived EVs.


Subject(s)
Bone Neoplasms/pathology , Extracellular Vesicles/pathology , Osteosarcoma/pathology , Animals , Bone Neoplasms/metabolism , Cell Adhesion/physiology , Cell Differentiation/physiology , Cell Line , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Extracellular Vesicles/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation, Neoplastic/physiology , Humans , Mice , NIH 3T3 Cells , Osteosarcoma/metabolism , Phenotype , Tumor Microenvironment/physiology
13.
J Cell Physiol ; 233(2): 1658-1670, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28671269

ABSTRACT

Osteosarcoma is the most common malignant bone tumor in children and young adults. The identification of proteins which exhibit different subcellular localization in low- versus high-risk osteosarcoma can be instrumental to obtain prognostic information and to develop innovative therapeutic strategies. Beside the well-characterized membrane and cytoplasmic localization of Src protein, this study evaluated the prognostic relevance of its so-far unknown nuclear compartmentalization. We analyzed the subcellular distribution of total and activated (pY418) Src in a tissue microarray including 60 osteosarcoma samples. Immunohistochemical analyses revealed a variable pattern of Src expression and localization, ranging from negative to high-stained nuclei combined with a substantial cytoplasmic staining for total and activated forms. The analysis of Kaplan-Meier survival curves in relationship to the diverse permutations of cytoplasmic and nuclear staining suggested a correlation between Src subcellular localization and the overall survival (OS) of osteosarcoma patients. In order to explain this different subcellular localization, normal osteoblasts and three osteosarcoma cell lines were used to investigate the molecular mechanism. Once confirmed a variable Src localization also in these cell lines, we demonstrated a correlation between the N-myristoyltransferase enzymes expression and activity and the Src nuclear content. In conclusion, these results described a so-far unknown Src nuclear localization in osteosarcoma cells, suggesting that the combined detection of nuclear and cytoplasmic Src levels can be used as a prognostic marker for osteosarcoma patient survival. A correlation between the N-myristoyltransferase enzymes and the Src subcellular localization was described as well.


Subject(s)
Biomarkers, Tumor/metabolism , Bone Neoplasms/enzymology , Cell Nucleus/enzymology , Osteosarcoma/enzymology , src-Family Kinases/metabolism , Acyltransferases/metabolism , Adolescent , Adult , Bone Neoplasms/mortality , Bone Neoplasms/pathology , Bone Neoplasms/therapy , Cell Line, Tumor , Child , Enzyme Activation , Female , Humans , Kaplan-Meier Estimate , Male , Osteosarcoma/mortality , Osteosarcoma/pathology , Osteosarcoma/therapy , Prognosis , Protein Processing, Post-Translational , Time Factors , Tissue Array Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...