ABSTRACT
Fentanyl is a powerful synthetic opioid used to treat severe pain. New administration routes toward its illegal consumption for recreational purposes pose a growing threat to public health, either due to misuse or abuse of this substance. As a result, the rapid qualitative and quantitative determination of fentanyl in biofluids is of great interest. A novel enzymatic biosensor based on adsorptive-stripping cyclic voltammetry is proposed as a cost-effective, reliable, and efficient device for fentanyl determination in urine samples. Disposable screen-printed carbon electrodes modified with multi-walled carbon nanotubes and cytochrome c were used to develop the testing platform. The electrochemical behavior of fentanyl exhibited a well-defined anodic wave around 0.66 V vs. pseudo reference electrode. The experimental conditions were optimized to obtain the best analytical response, and linear regression analysis of increasing concentration standards was applied to estimate the performance parameters. The results suggest a simple method with a wide linearity range, high sensitivity, low limits of detection (0.086 µg/mL) and quantification, and satisfactory precision (2.9% RSD). The feasibility and applicability of the voltammetric approach were assessed by fentanyl-spiked urine samples by standard additions calibration curves in two levels of enrichment with an accuracy of 92% and 100%.
Subject(s)
Biosensing Techniques , Nanotubes, Carbon , Cytochromes c , Fentanyl , ElectrodesABSTRACT
Resumen A 16 años del gran descubrimiento del grafeno los focos de atención vuelven a estar en este material con el reporte de su comportamiento superconductor dependiendo del apilado de sus capas. Sin embargo, su nombre durante estos últimos años no solo se ha relacionado a la superconductividad, sino que ha sido relacionado con una diversidad muy amplia de aplicaciones, en disciplinas muy diversas, entre las que cabe mencionar: materiales opto-electrónicos, electrodos para catálisis, dispositivos para tratamiento de desechos, biosensores, entre otros. Esto ha hecho que un gran número de grupos de investigación se hayan interesado no solo en estudiar sus propiedades, sino también en investigar nuevos métodos sintéticos que puedan ser escalables a niveles industriales, sin perder sus propiedades electrónicas y mecánicas. A pesar de los numerosos estudios y los recursos invertidos en grafeno no todas las aplicaciones han llegado a ser una realidad, en esta revisión se muestran algunas de las más exitosas.
Abstract 16 years after the great discovery of graphene, the focus and attention are again on this material after the report of its superconducting behavior depending on the stacking of its layers. The graphene has not only been related to superconductivity but has also been related to a wide diversity of applications, in very diverse disciplines. Among them, we can mention: Opto-electronic materials, electrodes for catalysis, devices for waste-water treatment, biosensors, batteries, and solar cells. This has caused a large number of research groups to be interested not only in the study of its properties, but also in the research of new synthetic methods that can be scaled to industrial levels, without losing its electronic and mechanical properties. Despite numerous studies and resources invested in graphene, not all applications have become a reality, some of the most successful are shown in this review.
Resumo 16 anos após a grande descoberta do grafeno, o foco e as atenções voltam a ser neste material com o relato de seu comportamento supercondutor em função do empilhamento de suas camadas. No entanto, seu nome nos últimos anos não tem sido apenas relacionado à supercondutividade, mas tem sido relacionado a uma diversidade muito ampla de aplicações, em disciplinas muito diversas. Entre eles podemos citar: materiais optoeletrônicos, eletrodos para catálise, dispositivos para tratamento de águas residuais, biossensores, baterias e células solares. Isso fez com que um grande número de grupos de pesquisa se interessassem não apenas em estudar suas propriedades, mas muitas pesquisas também foram feitas na geração de métodos sintéticos que pudessem ser dimensionados para níveis industriais, sem perder suas propriedades eletrônicas e mecânicas. Apesar dos inúmeros estudos e recursos investidos em grafeno, nem todas as aplicações se tornaram realidade, algumas das mais bem-sucedidas são apresentadas nesta revisão.
ABSTRACT
The synthetic cathinones mephedrone (4-MMC) and 4-methylethcathinone (4-MEC) are two designer drugs that represent the rise and fall effect of this drug category within the stimulants market and are still available in several countries around the world. As a result, the qualitative and quantitative determination of 'legal highs', and their mixtures, are of great interest. This work explores for the first time the spectroelectrochemical response of these substances by coupling cyclic voltammetry (CV) with Raman spectroscopy in a portable instrument. It was found that the stimulants exhibit a voltammetric response on a gold screen-printed electrode while the surface is simultaneously electro-activated to achieve a periodic surface-enhanced Raman spectroscopy (SERS) substrate with high reproducibility. The proposed method enables a rapid and reliable determination in which both substances can be selectively analyzed through the oxidation waves of the molecules and the characteristic bands of the electrochemical SERS (EC-SERS) spectra. The feasibility and applicability of the method were assessed in simulated seized drug samples and spiked synthetic urine. This time-resolved spectroelectrochemical technique provides a cost-effective and user-friendly tool for onsite screening of synthetic stimulants in matrices with low concentration analytes for forensic applications.
Subject(s)
Gold , Spectrum Analysis, Raman , Electrodes , Reproducibility of ResultsABSTRACT
Direct (photo)electrochemical production of non-fossil fuels from water and CO2 requires water-oxidation catalysis at near-neutral pH in the presence of appropriate anions that serve as proton acceptors. We investigate the largely enigmatic structural role of anions in water oxidation for the prominent cobalt-phosphate catalyst (CoCat), an amorphous and hydrated oxide material. Co3([(P/As)O]4)2·8H2O served, in conjunction with phosphate-arsenate exchange, as a synthetic model system. Its structural transformation was induced by prolonged operation at catalytic potentials and probed by X-ray absorption spectroscopy not only at the metal (Co), but for the first time also at the anion (As) K-edge. For initially isostructural microcrystals, anion exchange determined the amorphization process and final structure. Comparison to amorphous electrodeposited Co oxide revealed that in CoCat, the arsenate binds not only at oxide-layer edges, but also arsenic substitutes cobalt positions within the layered-oxide structure in an unusual AsO6 coordination. Our results show that in water oxidation catalysis at near-neutral pH, anion type and exchange dynamics correlate with the catalyst structure and redox properties.