Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37447074

ABSTRACT

Mexico harbors over 50% of maize's genetic diversity in the Americas. Native maize varieties are actively managed by small-scale producers within a diverse array of cultivation systems. Seed lot use, exchange and admixture has consequences for the in situ conservation of such varieties. Here we analyze native maize seed management dynamics from 906 small-scale producers surveyed in three Mexican states: Mexico City, Oaxaca and Chiapas. Furthermore, we analyze how their management practices can relate to transgene presence, which was experimentally documented for maize samples associated with the applied surveys. Through a data mining approach, we investigated which practices might be related with a higher probability of transgene presence. The variables found to have a strong spatial association with transgene presence were: for Mexico City, maize producers with larger parcels; for Oaxaca, producer's age (43-46 years) and the sale of seed; for Chiapas, the use of agricultural machinery and younger producers (37-43 years). Additionally, transgene presence and frequency within the socioeconomic regions of Oaxaca and Chiapas was analyzed. In Oaxaca, higher transgene frequencies occurred in regions where transgene presence had been previously reported. In Chiapas, the border regions with Guatemala as well as a region where reproduction of improved seed takes place, the highest proportion of positive samples were found. A detailed mapping of regional seed markets and seed exchange sites together with deployment of national and local biosecurity measures, could help prevent the further spread of transgenes into native maize varieties, as well as improve conservation efforts.

2.
Commun Biol ; 5(1): 985, 2022 09 17.
Article in English | MEDLINE | ID: mdl-36115902

ABSTRACT

Rising temperatures can lead to the occurrence of a large-scale climatic event, such as the melting of Greenland ice sheet, weakening the AMOC and further increasing dissimilarities between current and future climate. The impacts of such an event are still poorly assessed. Here, we evaluate those impacts across megadiverse countries on 21,146 species of tetrapods and vascular plants using the pessimistic climate change scenario (RCP 8.5) and four different scenarios of Greenland's ice sheet melting. We show that RCP 8.5 emission scenario would lead to a widespread reduction in species' geographic ranges (28-48%), which is projected to be magnified (58-99%) with any added contribution from the melting of Greenland. Also, declines in the potential geographical extent of species hotspots (12-89%) and alterations of species composition (19-91%) will be intensified. These results imply that the influence of a strong and rapid Greenland ice sheet melting, resulting in a large AMOC weakening, can lead to a faster collapse of biodiversity across the globe.


Subject(s)
Biodiversity , Ice Cover , Animals , Climate Change , Greenland , Plants
3.
Glob Chang Biol ; 28(23): 6992-7008, 2022 12.
Article in English | MEDLINE | ID: mdl-36053734

ABSTRACT

There is a need to revise the framework used to project species risks under climate change (CC) and land-use/cover change (LUCC) scenarios. We built a CC risk index using the latest Intergovernmental Panel on Climate Change framework, where risk is a function of vulnerability (sensitivity and adaptive capacity), exposure, and hazard. We incorporated future LUCC scenarios as part of the exposure component. We combined a trait-based approach based on biological characteristics of species with a correlative approach based on ecological niche modeling, assigning risk scores to species, taxonomic (orders), and functional (trophic, body size, and locomotion) groups of terrestrial mammals occurring in Mexico. We identified 15 species projected to lose their climatic suitability. Of the 11 taxonomic orders, Eulipotyphla, Didelphimorphia, Artiodactyla, and Lagomorpha had the highest risk scores. Of the 19 trophic groups, piscivores, insectivores under canopy, frugivores-granivores, herbivores browser, and myrmecophagous had the highest risk scores. Of the five body-sized groups, large-sized species (>15 kg) had highest risk scores. Of the seven locomotion groups, arboreal and semi-aquatics had highest risk scores. CC and LUCC scenarios reduced suitable areas of species potential distributions by 37.5% (with CC), and 51% (with CC and LUCC) under a limited full-dispersal assumption. Reductions in suitable areas of species potential distributions increased to 50.2% (with CC), and 52.4% (with CC and LUCC) under a non-dispersal assumption. Species-rich areas (>75% species) projected 36% (with CC) and 57% (with CC and LUCC) reductions in suitability for 2070. Shifts in climatic suitability projections of species-rich areas increased in number of species in northeast and southeast Mexico and decreased in northwest and southern Mexico, suggesting important species turnover. High-risk projections under future CC and LUCC scenarios for species, taxonomic, and functional group diversities, and species-rich areas of terrestrial mammals highlight trends in different impacts on biodiversity and ecosystem function.


Subject(s)
Climate Change , Ecosystem , Animals , Mexico , Biodiversity , Mammals
4.
Commun Biol ; 4(1): 141, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514877

ABSTRACT

Impacts on ecosystems and biodiversity are a prominent area of research in climate change. However, little is known about the effects of abrupt climate change and climate catastrophes on them. The probability of occurrence of such events is largely unknown but the associated risks could be large enough to influence global climate policy. Amphibians are indicators of ecosystems' health and particularly sensitive to novel climate conditions. Using state-of-the-art climate model simulations, we present a global assessment of the effects of unabated global warming and a collapse of the Atlantic meridional overturning circulation (AMOC) on the distribution of 2509 amphibian species across six biogeographical realms and extinction risk categories. Global warming impacts are severe and strongly enhanced by additional and substantial AMOC weakening, showing tipping point behavior for many amphibian species. Further declines in climatically suitable areas are projected across multiple clades, and biogeographical regions. Species loss in regional assemblages is extensive across regions, with Neotropical, Nearctic and Palearctic regions being most affected. Results underline the need to expand existing knowledge about the consequences of climate catastrophes on human and natural systems to properly assess the risks of unabated warming and the benefits of active mitigation strategies.


Subject(s)
Amphibians/physiology , Ecosystem , Global Warming , Temperature , Water Movements , Amphibians/classification , Animals , Computer Simulation , Databases, Factual , Endangered Species , Environmental Monitoring , Extinction, Biological , Ice , Models, Theoretical , Population Density
5.
PLoS One ; 15(7): e0209808, 2020.
Article in English | MEDLINE | ID: mdl-32673306

ABSTRACT

Spatial assessments of historical climate change provide information that can be used by scientists to analyze climate variation over time and evaluate, for example, its effects on biodiversity, in order to focus their research and conservation efforts. Despite the fact that there are global climatic databases available at high spatial resolution, they represent a short temporal window that impedes evaluating historical changes of climate and their impacts on biodiversity. To fill this gap, we developed climate gridded surfaces for Mexico for three periods that cover most of the 20th and early 21st centuries: t1-1940 (1910-1949), t2-1970 (1950-1979) and t3-2000 (1980-2009), and used these interpolated surfaces to describe how climate has changed over time, both countrywide and in its 19 biogeographic provinces. Results from our characterization of climate change indicate that the mean annual temperature has increased by nearly 0.2°C on average across the whole country from t2-1970 to t3-2000. However, changes have not been spatially uniform: Nearctic provinces in the north have suffered higher temperature increases than southern tropical regions. Central and southern provinces cooled at the beginning of the 20th century but warmed consistently since the 1970s. Precipitation increased between t1-1940 and t2-1970 across the country, more notably in the northern provinces, and it decreased between t2-1970 and t3-2000 in most of the country. Results on the historical climate conditions in Mexico may be useful for climate change analyses for both environmental and social sciences. Nonetheless, our climatology was based on information from climate stations for which 9.4-36.2% presented inhomogeneities over time probably owing to non-climatic factors, and climate station density changed over time. Therefore, the estimated changes observed in our analysis need to be interpreted cautiously.


Subject(s)
Climate Change/history , Biodiversity , Databases, Factual , History, 20th Century , History, 21st Century , Mexico , Rain , Temperature
6.
PLoS One ; 13(8): e0201543, 2018.
Article in English | MEDLINE | ID: mdl-30092077

ABSTRACT

Demographic analyses and ecological niche modeling (ENM) are two popular tools that address species persistence in relation to environmental conditions. Classic demography provides detailed information about the mechanisms that allow a population to grow or remain stable at a local scale, while ENM infers distributions from conditions suitable for species persistence at geographic scales by relating species' occurrences with environmental variables. By integrating these two tools, we may better understand population processes that determine species persistence at a geographic scale. To test this idea, we developed a model that relates climate to demography of the cactus Opuntia rastrera using 15 years of data from one locality. Using this model we determined the geographic area where populations would have positive growth rates given its climatic conditions. The climate-dependent demographic model showed poor performance as a distribution model, but it was helpful in defining some mechanisms that determine species' distributions. For instance, high rainfall had a negative impact on the population growth rate by increasing mortality. Rainy areas to the west of the distribution of O. rastrera were identified as unsuitable both by our climate-dependent demographic model and by a popular ENM algorithm (MaxEnt), suggesting that distribution is constrained by excessive rains due to high mortality. Areas projected to be climatically suitable by MaxEnt were not related with higher population growth rates. Instead, we found a strong correlation between environmental distance to the niche centroid (center of the niche hypervolume, where optimal conditions may occur) and population growth rate, meaning that the niche centroid approach is helpful in finding high-fitness areas.


Subject(s)
Climate Change , Demography , Environment , Models, Theoretical , Opuntia/growth & development , Algorithms , Ecosystem , Population Growth
7.
Toxins (Basel) ; 8(1)2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26712787

ABSTRACT

Scorpions are among the oldest terrestrial arthropods, which are distributed worldwide, except for Antarctica and some Pacific islands. Scorpion envenomation represents a public health problem in several parts of the world. Mexico harbors the highest diversity of scorpions in the world, including some of the world's medically important scorpion species. The systematics and diversity of Mexican scorpion fauna has not been revised in the past decade; and due to recent and exhaustive collection efforts as part of different ongoing major revisionary systematic projects, our understanding of this diversity has changed compared with previous assessments. Given the presence of several medically important scorpion species, the study of their venom in the country is also important. In the present contribution, the diversity of scorpion species in Mexico is revised and updated based on several new systematic contributions; 281 different species are recorded. Commentaries on recent venomic, ecological and behavioral studies of Mexican scorpions are also provided. A list containing the most important peptides identified from 16 different species is included. A graphical representation of the different types of components found in these venoms is also revised. A map with hotspots showing the current knowledge on scorpion distribution and areas explored in Mexico is also provided.


Subject(s)
Scorpion Venoms , Scorpions , Animals , Mexico , Scorpion Venoms/chemistry , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...