Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36616400

ABSTRACT

The addition of nanoparticles as fillers has a significant influence in modifying the dynamic conditions and avoiding crystallization in polymer composites. In this work, (PEO)4CF3COOLi electrolyte and multi-walled carbon nanotubes (MWCNTs) were used to prepare composites by a solution method. The formation of the new composite was evidenced by the experimental results obtained from DSC analysis and infrared spectroscopy (FTIR). The impedance spectroscopy analysis shows a notable decrease in the resistance, which is attributed to an interaction between the oxygen of the polymer and the Li+ cations of the salt, and the interactions between the electrolyte and the MWNTs. Values of dc conductivity of 8.42 × 10-4 S cm-1 at room temperature are obtained at a concentration of 2.0 wt.% MWCNT in the whole electrolyte. The results indicate that membranes can be used in technological devices such as batteries and gas or moisture sensors.

2.
Materials (Basel) ; 12(9)2019 May 07.
Article in English | MEDLINE | ID: mdl-31067631

ABSTRACT

Polymeric membranes of poly(ethylene oxide) (PEO) and sodium trifluoroacetate (PEO:CF3COONa) combined with different concentrations of aluminum oxide (Al2O3) particles were analyzed by impedance spectroscopy, differential scanning calorimetry (DSC) and thermogravimetry (TGA). DSC results show changes in the crystalline fraction of PEO when the concentration of Al2O3 is increased. TGA analysis showed thermal stability up to 430 K showing small changes with the addition of alumina particles. The decrease in crystalline fraction for membranes with low Al2O3 concentration is associated with the increase in conductivity of (PEO)10CF3COONa + x wt.% Al2O3 composites.

SELECTION OF CITATIONS
SEARCH DETAIL
...