Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 4(9): 1303-10, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16170021

ABSTRACT

Anthrax lethal toxin, composed of protective antigen and lethal factor, was tested for cytotoxicity to human melanoma cell lines and normal human cells. Eleven of 18 melanoma cell lines were sensitive to anthrax lethal toxin (IC(50) < 400 pmol/L) and 10 of these 11 sensitive cell lines carried the V599E BRAF mutation. Most normal cell types (10 of 15) were not sensitive to anthrax lethal toxin and only 5 of 15 normal human cell types were sensitive to anthrax lethal toxin (IC(50) < 400 pmol/L). These cells included monocytes and a subset of endothelial cells. In both melanoma cell lines and normal cells, anthrax toxin receptor expression levels did not correlate with anthrax lethal toxin cytotoxicity. Furthermore, an anthrax toxin receptor-deficient cell line (PR230) did not show any enhanced sensitivity to anthrax lethal toxin when transfected with anthrax toxin receptor. Anthrax lethal toxin toxicity correlated with elevated phosphorylation levels of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) 1/2 in both melanoma cell lines and normal cells. Anthrax lethal toxin-sensitive melanoma cell lines and normal cells had higher phospho-MEK1/2 levels than anthrax lethal toxin-resistant melanoma cell lines and normal tissue types. U0126, a specific MEK1/2 inhibitor, was not toxic to anthrax lethal toxin-resistant melanoma cell lines but was toxic to 8 of 11 anthrax lethal toxin-sensitive cell lines. These results show that anthrax lethal toxin toxicity correlates with elevated levels of active MEK1/2 pathway but not with anthrax toxin receptor expression levels in both normal and malignant tissues. Anthrax lethal toxin may be a useful therapeutic for melanoma patients, especially those carrying the V599E BRAF mutation with constitutive activation of the mitogen-activated protein kinase pathway.


Subject(s)
Antigens, Bacterial/toxicity , Bacterial Toxins/toxicity , Melanoma/pathology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Drug Resistance, Neoplasm , Humans , Melanoma/metabolism , Mitogen-Activated Protein Kinases/metabolism , Proto-Oncogene Proteins B-raf/genetics , Receptors, Peptide/metabolism , Tumor Cells, Cultured
2.
Exp Hematol ; 32(3): 277-81, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15003313

ABSTRACT

Chemoresistance is a common cause of treatment failure in patients with acute myeloid leukemia (AML). We generated a diphtheria toxin (DT) fusion protein composed of the catalytic and translocation domains of DT (DT388) fused to interleukin-3 (IL-3). IL-3 receptors (IL-3R) are overexpressed on blasts from many AML patients. DT388IL-3 showed cytotoxicity to leukemic blasts in vitro and in vivo and minimal damage to normal tissues in nonhuman primate models. However, only a fraction of patient leukemic samples were sensitive to the agent. To enhance the potency and specificity of the DT388IL-3 molecule, we constructed variants with altered residues in the IL-3 moiety. Two of these variants, DT388IL-3[K116W] and DT388IL-3[Delta125-133], were produced and partially purified from Escherichia coli with excellent yields. They showed enhanced binding to the human IL-3R and greater cytotoxicity to human leukemia cell lines relative to wild-type DT388IL-3. Interestingly, the results support a previously hypothesized model for interaction of the C-terminal residues of IL-3 with a hydrophobic patch on the alpha-subunit of IL-3R. Rational modification of the targeting domain based on structural analysis can produce a fusion toxin with increased ability to kill tumor cells. One or both of these variant fusion proteins merit further development for therapy of chemotherapy refractory AML.


Subject(s)
Antineoplastic Agents/pharmacology , Diphtheria Toxin/pharmacology , Interleukin-3/pharmacology , Receptors, Interleukin-3/drug effects , Recombinant Fusion Proteins/pharmacology , Acute Disease , Amino Acid Substitution , Antineoplastic Agents/chemistry , Cell Line, Tumor/drug effects , Diphtheria Toxin/chemistry , Drug Evaluation, Preclinical , Humans , Interleukin-3/chemistry , Leukemia, Myeloid/pathology , Mutagenesis, Site-Directed , Protein Binding , Receptors, Interleukin-3/metabolism , Recombinant Fusion Proteins/chemistry , Sequence Deletion , Structure-Activity Relationship
3.
Protein Expr Purif ; 33(1): 123-33, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14680969

ABSTRACT

A genetically engineered fusion toxin targeted to acute myeloid leukemia (AML) blasts was designed with the first 388 amino acid residues of diphtheria toxin with an H-M linker fused to human interleukin-3. The cDNA was subcloned in the pRK bacterial expression plasmid and used to transform BLR (DE3) Escherichia coli. A single transformed colony was grown in Superbroth with ampicillin; bacteria were centrifuged at an OD(650) of 1.3; master cell bank aliquots of bacteria in 30% glycerol/Superbroth were frozen and stored at -80 degrees C. Master cell bank bacteria were diluted 1500-fold into Superbroth and recombinant protein was induced with 1 mM IPTG at an OD(650) of 0.6. After two additional hours of fermentation, inclusion bodies were isolated, washed, and denatured in guanidine hydrochloride and dithioerythritol. Recombinant protein was refolded by diluted 100-fold in cold buffer with arginine and oxidized glutathione. After dialysis, purified protein was obtained after anion-exchange, size exclusion on FPLC, and polymyxin B affinity chromatography. The final material was filter sterilized, aseptically vialed, and stored at -80 degrees C. Seventy-five 3-L bacterial culture preparations were made and pooled for the AT-1 batch (568 mL) and twenty-four 3-L bacterial culture preparations were made and pooled for the AT-2 batch (169 mL). The final product was characterized by Coomassie Plus protein assay, Coomassie-stained SDS-PAGE, limulus amebocyte lysate endotoxin assay, human AML TF/H-ras cell cytotoxicity assay, sterility, tandem mass spectroscopy, IL3 receptor binding affinity, ADP ribosylation activity, inhibition of normal human CFU-GM, disulfide bond analysis, immunoblots, peptide mapping, stability, HPLC TSK3000, N-terminal sequencing, E. coli DNA contamination, C57BL/6 mouse toxicity, cynomolgus monkey toxicity, and immunohistochemistry. Yields were 25.7+/-5.6 mg/L bacterial culture of denatured fusion toxin. After refolding and chromatography, final yields were 20+/-11% or 5 mg/L. Vialed product was sterile. Batches were in 0.25 M sodium chloride/5 mM Tris, pH 8, and had protein concentrations of 1.8-1.9 mg/mL. Purity by SDS-PAGE was 99+/-1%. Aggregates by HPLC were <1 %. Potency revealed a 48 h IC(50) of 6-8 pM on TF/H-ras cells. Endotoxin levels were 1 eu/mg. The remaining chemical and biologic assays confirmed the purity, composition, and functional activities of the molecule. The LD(10) in mice was 250 microg/kg/day every other day for six doses. The MTD in monkeys was 60 microg/kg/day every other day for six doses. Drug did not react with tested frozen human tissue sections by immunohistochemistry. There was no evidence of loss of solubility, proteolysis aggregation, or loss of potency over 6 months at -80 and -20 degrees C. Further, the drug was stable at 4 and 25 degrees C in the plastic syringe and administration tubing for 24 h and at 37 degrees C in human serum for 24 h. The synthesis of this protein drug should be useful for production for clinical phase I/II clinical trials and may be suitable for other diphtheria fusion toxins indicated for clinical development.


Subject(s)
Diphtheria Toxin/biosynthesis , Diphtheria Toxin/isolation & purification , Interleukin-3/biosynthesis , Interleukin-3/isolation & purification , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/isolation & purification , Acute Disease , Adenosine Diphosphate Ribose/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cell Line, Tumor , Chromatography, Liquid/methods , Diphtheria Toxin/genetics , Diphtheria Toxin/pharmacology , Drug Screening Assays, Antitumor , Drug Stability , Female , Gene Expression , Haplorhini , Humans , Interleukin-3/genetics , Interleukin-3/metabolism , Interleukin-3/pharmacology , Leukemia, Myeloid/drug therapy , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Plasmids/genetics , Receptors, Interleukin-3/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...