Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 5932, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38467766

ABSTRACT

Glyoxal oxidases, belonging to the group of copper radical oxidases (CROs), oxidize aldehydes to carboxylic acids, while reducing O2 to H2O2. Their activity on furan derivatives like 5-hydroxymethylfurfural (HMF) makes these enzymes promising biocatalysts for the environmentally friendly synthesis of the bioplastics precursor 2,5-furandicarboxylic acid (FDCA). However, glyoxal oxidases suffer from inactivation, which requires the identification of suitable redox activators for efficient substrate conversion. Furthermore, only a few glyoxal oxidases have been expressed and characterized so far. Here, we report on a new glyoxal oxidase from Trametes versicolor (TvGLOX) that was expressed at high levels in Pichia pastoris (reclassified as Komagataella phaffii). TvGLOX was found to catalyze the oxidation of aldehyde groups in glyoxylic acid, methyl glyoxal, HMF, 2,5-diformylfuran (DFF) and 5-formyl-2-furancarboxylic acid (FFCA), but barely accepted alcohol groups as in 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), preventing formation of FDCA from HMF. Various redox activators were tested for TvGLOX reactivation during catalyzed reactions. Among them, a combination of horseradish peroxidase and its substrate 2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid) (ABTS) most efficiently reactivated TvGLOX. Through continuous reactivation of TvGLOX in a two-enzyme system employing a recombinant Moesziomyces antarcticus aryl-alcohol oxidase (MaAAO) almost complete conversion of 8 mM HMF to FDCA was achieved within 24 h.


Subject(s)
Alcohol Oxidoreductases , Furaldehyde/analogs & derivatives , Hydrogen Peroxide , Polyporaceae , Trametes , Trametes/genetics , Trametes/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Oxidation-Reduction , Glyoxal
2.
Biotechnol J ; 19(1): e2300421, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38044796

ABSTRACT

Unspecific peroxygenases (UPOs) are promising biocatalysts that catalyze oxyfunctionalization reactions without the need for costly cofactors. Pichia pastoris (reclassified as Komagataella phaffii) is considered an attractive host for heterologous expression of UPOs. However, integration of UPO-expression cassettes into the genome via a single cross-over yields recombinant Pichia transformants with different UPO gene copy numbers resulting in different expression levels. Selection of the most productive Pichia transformants by a commonly used screening in liquid medium in 96-well plates is laborious and lasts up to 5 days. In this work, we developed a simple two-step agar plate-based assay to screen P. pastoris transformants for UPO activity with less effort, within shorter time, and without automated screening devices. After cell growth and protein expression on agar plates supplemented with methanol and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), an additional top agar layer supplemented with ABTS and peroxide is added. UPO activity is visualized within 15 min by formation of green zones around UPO-secreting P. pastoris transformants. The assay was validated with two UPOs, AbrUPO from Aspergillus brasiliensis and evolved PaDa-I from Agrocybe aegerita. The assay results were confirmed in a quantitative 96-deep well plate screening in liquid medium.


Subject(s)
Benzothiazoles , Mixed Function Oxygenases , Pichia , Saccharomycetales , Sulfonic Acids , Agar/metabolism , Mixed Function Oxygenases/metabolism , Pichia/genetics , Pichia/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
3.
Methods Enzymol ; 693: 133-170, 2023.
Article in English | MEDLINE | ID: mdl-37977729

ABSTRACT

Bacterial cytochromes P450 (P450s) have been recognized as attractive targets for biocatalysis and protein engineering. They are soluble cytosolic enzymes that demonstrate higher stability and activity than their membrane-associated eukaryotic counterparts. Many bacterial P450s possess broad substrate spectra and can be produced in well-known expression hosts like Escherichia coli at high levels, which enables quick and convenient mutant libraries construction. However, the majority of bacterial P450s interacts with two auxiliary redox partner proteins, which significantly increase screening efforts. We have established recombinant E. coli cells for screening of P450 variants that rely on two separate redox partners. In this chapter, a case study on construction of a selective P450 to synthesize a precursor of several chemotherapeutics, (-)-podophyllotoxin, is described. The procedure includes co-expression of P450 and redox partner genes in E. coli with subsequent whole-cell conversion of the substrate (-)-deoxypodophyllotoxin in 96-deep-well plates. By omitting the chromatographic separation while measuring mass-to-charge ratios specific for the substrate and product via MS in so-called multiple injections in a single experimental run (MISER) LC/MS, the analysis time could be drastically reduced to roughly 1 min per sample. Screening results were verified by using isolated P450 variants and purified redox partners.


Subject(s)
Cytochrome P-450 Enzyme System , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Cloning, Molecular , Oxidation-Reduction , Recombinant Proteins/metabolism
4.
Biotechnol Bioeng ; 120(7): 1762-1772, 2023 07.
Article in English | MEDLINE | ID: mdl-37186287

ABSTRACT

Cytochromes P450 are useful biocatalysts in synthetic chemistry and important bio-bricks in synthetic biology. Almost all bacterial P450s require separate redox partners for their activity, which are often expressed in recombinant Escherichia coli using multiple plasmids. However, the application of CRISPR/Cas recombineering facilitated chromosomal integration of heterologous genes which enables more stable and tunable expression of multi-component P450 systems for whole-cell biotransformations. Herein, we compared three E. coli strains W3110, JM109, and BL21(DE3) harboring three heterologous genes encoding a P450 and two redox partners either on plasmids or after chromosomal integration in two genomic loci. Both loci proved to be reliable and comparable for the model regio- and stereoselective two-step oxidation of (S)-ketamine. Furthermore, the CRISPR/Cas-assisted integration of the T7 RNA polymerase gene enabled an easy extension of T7 expression strains. Higher titers of soluble active P450 were achieved in E. coli harboring a single chromosomal copy of the P450 gene compared to E. coli carrying a medium copy pET plasmid. In addition, improved expression of both redox partners after chromosomal integration resulted in up to 80% higher (S)-ketamine conversion and more than fourfold increase in total turnover numbers.


Subject(s)
Escherichia coli , Ketamine , Escherichia coli/genetics , Escherichia coli/metabolism , Ketamine/metabolism , Plasmids/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Oxidation-Reduction
5.
J Steroid Biochem Mol Biol ; 229: 106268, 2023 05.
Article in English | MEDLINE | ID: mdl-36764495

ABSTRACT

Steroid drugs, the second largest class of pharmaceuticals after antibiotics, have shown significant anti-inflammatory, anti-allergic, and endocrine-regulating effects. A group of cytochrome P450 enzymes, namely, CYP11A1 isoenzymes from different organisms are capable of converting cholesterol into pregnenolone, which is a pivotal reaction in both steroid metabolism and (bio)synthetic network of steroid products. However, the low activity of CYP11A1s greatly restricts the industrial application of these cholesterol side-chain cleavage enzymes. Herein, we investigate ten CYP11A1 enzymes of different origins and in vitro characterize two CYP11A1s with a relatively higher expression level from Capra hircus and Sus scrofa, together with the CYP11A1s from Homo sapiens and Bos taurus as references. Towards five selected sterol substrates with different side chain structures, S. scrofa CYP11A1 displays relatively higher activities. Through redox partners combination screening, we reveal the optimal redox partner pair of S. scrofa adrenodoxin and C. hircus adrenodoxin reductase. Moreover, the semi-rational mutagenesis for the active sites and substrate entrance channels of human and bovine CYP11A1s is performed based on comparative analysis of their crystal structures. The mutant mBtCYP11A1-Q377A derived from mature B. taurus CYP11A1 shows a 1.46 times higher activity than the wild type enzyme. These results not only demonstrate the tunability of the highly conserved CYP11A1 isoenzymes, but also lay a foundation for the following engineering efforts on these industrially relevant P450 enzymes.


Subject(s)
Cholesterol Side-Chain Cleavage Enzyme , Isoenzymes , Cattle , Animals , Humans , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Isoenzymes/metabolism , Cholesterol/metabolism , Oxidation-Reduction , Steroids , Adrenodoxin/chemistry , Mammals/metabolism
6.
Angew Chem Int Ed Engl ; 62(7): e202213671, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36468873

ABSTRACT

The biocatalytic oxidation of acylated hydroxylamines enables the direct and selective introduction of nitrogen functionalities by activation of allylic C-H bonds. Utilizing either laccases or an oxidase/peroxidase couple for the formal dehydrogenation of N-hydroxycarbamates and hydroxamic acids with air as the terminal oxidant, acylnitroso species are generated under particularly mild aqueous conditions. The reactive intermediates undergo C-N bond formation through an ene-type mechanism and provide high yields both in intramolecular and intermolecular enzymatic aminations. Investigations on different pathways of the two biocatalytic systems and labelling studies provide more insight into this unprecedented promiscuity of classical oxidoreductases as catalysts for nitroso-based transformations.


Subject(s)
Oxidants , Oxidoreductases , Oxidation-Reduction , Amination , Biocatalysis , Catalysis
7.
Metab Eng Commun ; 15: e00205, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36119807

ABSTRACT

Microbial synthesis of monolignols and lignans from simple substrates is a promising alternative to plant extraction. Bottlenecks and byproduct formation during heterologous production require targeted metabolomics tools for pathway optimization. In contrast to available fractional methods, we established a comprehensive targeted metabolomics method. It enables the quantification of 17 extra- and intracellular metabolites of the monolignol and lignan pathway, ranging from amino acids to pluviatolide. Several cell disruption methods were compared. Hot water extraction was best suited regarding monolignol and lignan stability as well as extraction efficacy. The method was applied to compare enzymes for alleviating bottlenecks during heterologous monolignol and lignan production in E. coli. Variants of tyrosine ammonia-lyase had a considerable influence on titers of subsequent metabolites. The choice of multicopper oxidase greatly affected the accumulation of lignans. Metabolite titers were monitored during batch fermentation of either monolignol or lignan-producing recombinant E. coli strains, demonstrating the dynamic accumulation of metabolites. The new method enables efficient time-resolved targeted metabolomics of monolignol- and lignan-producing E. coli. It facilitates bottleneck identification and byproduct quantification, making it a valuable tool for further pathway engineering studies. This method will benefit the bioprocess development of biotransformation or fermentation approaches for microbial lignan production.

8.
Chembiochem ; 23(12): e202200065, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35333425

ABSTRACT

Multi-enzyme cascades enable the production of valuable chemical compounds, and fusion of the enzymes that catalyze these reactions can improve the reaction outcome. In this work, P450 BM3 from Bacillus megaterium and an alcohol dehydrogenase from Sphingomonas yanoikuyae were fused to bifunctional constructs to enable cofactor regeneration and improve the in vitro two-step oxidation of (+)-valencene to (+)-nootkatone. An up to 1.5-fold increased activity of P450 BM3 was achieved with the fusion constructs compared to the individual enzyme. Conversion of (+)-valencene coupled to cofactor regeneration and performed in the presence of the solubilizing agent cyclodextrin resulted in up to 1080 mg L-1 (+)-nootkatone produced by the fusion constructs as opposed to 620 mg L-1 produced by a mixture of the separate enzymes. Thus, a two-step (+)-valencene oxidation was considerably improved through the simple method of enzyme fusion.


Subject(s)
Alcohol Dehydrogenase , Bacillus megaterium , Alcohol Dehydrogenase/genetics , Bacillus megaterium/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , NADPH-Ferrihemoprotein Reductase/chemistry , NADPH-Ferrihemoprotein Reductase/genetics , Polycyclic Sesquiterpenes
9.
Biotechnol Bioeng ; 119(2): 493-503, 2022 02.
Article in English | MEDLINE | ID: mdl-34796477

ABSTRACT

Lignin valorization may offer a sustainable approach to achieve a chemical industry that is not completely dependent on fossil resources for the production of aromatics. However, lignin is a recalcitrant, heterogeneous, and complex polymeric compound for which only very few catalysts can act in a predictable and reproducible manner. Laccase is one of those catalysts and has often been referred to as an ideal "green" catalyst, as it is able to oxidize various linkages within lignin to release aromatic products, with the use of molecular oxygen and formation of water as the only side product. The extent and rate of laccase-catalyzed lignin conversion were measured using the label-free analytical technique isothermal titration calorimetry (ITC). IITC provides the molar enthalpy of the reaction, which reflects the extent of conversion and the time-dependent power trace, which reflects the rate of the reaction. Calorimetric assessment of the lignin conversion brought about by various fungal and bacterial laccases in the absence of mediators showed marked differences in the extent and rate of conversion for the different enzymes. Kraft lignin conversion by Trametes versicolor laccase followed Michaelis-Menten kinetics and was characterized by the following thermodynamic and kinetic parameters ΔHITC = -(2.06 ± 0.06)·103 kJ mol-1 , KM = 6.6 ± 1.2 µM and Vmax = 0.30 ± 0.02 U/mg at 25°C and pH 6.5. We envision calorimetric techniques as important tools for the development of enzymatic lignin valorization strategies.


Subject(s)
Calorimetry/methods , Laccase , Lignin , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Kinetics , Laccase/chemistry , Laccase/metabolism , Lignin/analysis , Lignin/chemistry , Lignin/metabolism , Polyporaceae/enzymology , Polyporaceae/genetics
10.
AMB Express ; 11(1): 162, 2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34865204

ABSTRACT

Cytochromes P450 catalyze oxidation of chemically diverse compounds and thus offer great potential for biocatalysis. Due to the complexity of these enzymes, their dependency of nicotinamide cofactors and redox partner proteins, recombinant microbial whole cells appear most appropriate for effective P450-mediated biocatalysis. However, some drawbacks exist that require individual solutions also when P450 whole-cell catalysts are used. Herein, we compared wet resting cells and lyophilized cells of recombinant E. coli regarding P450-catalyzed oxidation and found out that lyophilized cells are well-appropriate as P450-biocatalysts. E. coli harboring CYP105D from Streptomyces platensis DSM 40041 was used as model enzyme and testosterone as model substrate. Conversion was first enhanced by optimized handling of resting cells. Co-expression of the alcohol dehydrogenase from Rhodococcus erythropolis for cofactor regeneration did not affect P450 activity of wet resting cells (46% conversion) but was crucial to obtain sufficient P450 activity with lyophilized cells reaching a conversion of 72% under the same conditions. The use of recombinant lyophilized E. coli cells for P450 mediated oxidations is a promising starting point towards broader application of these enzymes.

11.
Sci Rep ; 11(1): 21706, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34737365

ABSTRACT

Fusion of multiple enzymes to multifunctional constructs has been recognized as a viable strategy to improve enzymatic properties at various levels such as stability, activity and handling. In this study, the genes coding for cytochrome P450 BM3 from B. megaterium and formate dehydrogenase from Pseudomonas sp. were fused to enable both substrate oxidation catalyzed by P450 BM3 and continuous cofactor regeneration by formate dehydrogenase within one construct. The order of the genes in the fusion as well as the linkers that bridge the enzymes were varied. The resulting constructs were compared to individual enzymes regarding substrate conversion, stability and kinetic parameters to examine whether fusion led to any substantial improvements of enzymatic properties. Most noticeably, an activity increase of up to threefold was observed for the fusion constructs with various substrates which were partly attributed to the increased diflavin reductase activity of the P450 BM3. We suggest that P450 BM3 undergoes conformational changes upon fusion which resulted in altered properties, however, no NADPH channeling was detected for the fusion constructs.


Subject(s)
Bacterial Proteins/genetics , Cytochrome P-450 Enzyme System/genetics , Formate Dehydrogenases/genetics , NADPH-Ferrihemoprotein Reductase/genetics , Protein Engineering/methods , Bacillus megaterium/enzymology , Bacillus megaterium/genetics , Bacillus megaterium/metabolism , Bacterial Proteins/metabolism , Catalysis , Cytochrome P-450 Enzyme System/metabolism , Enzymes/genetics , NADP/metabolism , NADPH-Ferrihemoprotein Reductase/metabolism , Oxidation-Reduction , Pseudomonas/enzymology , Pseudomonas/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology
12.
Microb Cell Fact ; 20(1): 183, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34544406

ABSTRACT

BACKGROUND: The aryltetralin lignan (-)-podophyllotoxin is a potent antiviral and anti-neoplastic compound that is mainly found in Podophyllum plant species. Over the years, the commercial demand for this compound rose notably because of the high clinical importance of its semi-synthetic chemotherapeutic derivatives etoposide and teniposide. To satisfy this demand, (-)-podophyllotoxin is conventionally isolated from the roots and rhizomes of Sinopodophyllum hexandrum, which can only grow in few regions and is now endangered by overexploitation and environmental damage. For these reasons, targeting the biosynthesis of (-)-podophyllotoxin precursors or analogues is fundamental for the development of novel, more sustainable supply routes. RESULTS: We recently established a four-step multi-enzyme cascade to convert (+)-pinoresinol into (-)-matairesinol in E. coli. Herein, a five-step multi-enzyme biotransformation of (-)-matairesinol to (-)-deoxypodophyllotoxin was proven effective with 98 % yield at a concentration of 78 mg/L. Furthermore, the extension of this cascade to a sixth step leading to (-)-epipodophyllotoxin was evaluated. To this end, seven enzymes were combined in the reconstituted pathway involving inter alia three plant cytochrome P450 monooxygenases, with two of them being functionally expressed in E. coli for the first time. CONCLUSIONS: Both, (-)-deoxypodophyllotoxin and (-)-epipodophyllotoxin, are direct precursors to etoposide and teniposide. Thus, the reconstitution of biosynthetic reactions of Sinopodophyllum hexandrum as an effective multi-enzyme cascade in E. coli represents a solid step forward towards a more sustainable production of these essential pharmaceuticals.


Subject(s)
Escherichia coli/enzymology , Escherichia coli/metabolism , Podophyllotoxin/analogs & derivatives , Podophyllotoxin/biosynthesis , Biocatalysis , Biotransformation , Drugs, Chinese Herbal , Escherichia coli/genetics , Lignans/metabolism
13.
Appl Microbiol Biotechnol ; 105(20): 7743-7755, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34545417

ABSTRACT

Fungal aryl-alcohol oxidases (AAOs) are attractive biocatalysts because they selectively oxidize a broad range of aromatic and aliphatic allylic primary alcohols while yielding hydrogen peroxide as the only by-product. However, their use is hampered by challenging and often unsuccessful heterologous expression. Production of PeAAO1 from Pleurotus eryngii ATCC 90787 in Pichia pastoris failed, while PeAAO2 from P. eryngii P34 with an amino acid identity of 99% was expressed at high yields. By successively introducing mutations in PeAAO1 to mimic the sequence of PeAAO2, the double mutant PeAAO1 ER with mutations K583E and Q584R was constructed, that was successfully expressed in P. pastoris. Functional expression was enhanced up to 155 U/l via further replacements D361N (variant NER) or V367A (variant AER). Fed-batch cultivation of recombinant P. pastoris yielded up to 116 mg/l of active variants. Glycosylated PeAAO1 variants demonstrated high stability and catalytic efficiencies similar to PeAAO2. Interestingly, P. pastoris expressing PeAAO1 variant ER contained roughly 13 gene copies but showed similar volumetric activity as NER and AER with one to two gene copies and four times lower mRNA levels. Additional H-bonds and salt bridges introduced by mutations K583E and Q584R might facilitate heterologous expression by enhanced protein folding.Key points• PeAAO1 not expressed in P. pastoris and PeAAO2 well-expressed in Pichia differ at 7 positions.• Expression of PeAAO1 in P. pastoris achieved through mutagenesis based on PeAAO2 sequence.• Combination of K583E and Q584R is essential for expression of PeAAO1 in P. pastoris.


Subject(s)
Alcohol Oxidoreductases/biosynthesis , Pleurotus , Mutation , Pichia/genetics , Pichia/metabolism , Pleurotus/enzymology , Pleurotus/genetics , Recombinant Proteins/biosynthesis , Saccharomycetales
14.
Appl Microbiol Biotechnol ; 105(10): 4111-4126, 2021 May.
Article in English | MEDLINE | ID: mdl-33997930

ABSTRACT

Aryl-alcohol oxidases (AAOs) are FAD-containing enzymes that oxidize a broad range of aromatic as well as aliphatic allylic alcohols to aldehydes. Their broad substrate spectrum accompanied by the only need for molecular oxygen as cosubstrate and production of hydrogen peroxide as sole by-product makes these enzymes very promising biocatalysts. AAOs were used in the synthesis of flavors, fragrances, and other high-value-added compounds and building blocks as well as in dye decolorization and pulp biobleaching. Furthermore, AAOs offer a huge potential as efficient suppliers of hydrogen peroxide for peroxidase- and peroxygenase-catalyzed reactions. A prerequisite for application as biocatalysts at larger scale is the production of AAOs in sufficient amounts. Heterologous expression of these predominantly fungal enzymes is, however, quite challenging. This review summarizes different approaches aiming at enhancing heterologous expression of AAOs and gives an update on substrates accepted by these promising enzymes as well as potential fields of their application. KEY POINTS: • Aryl-alcohol oxidases (AAOs) supply ligninolytic peroxidases with H2O2. • AAOs accept a broad spectrum of aromatic and aliphatic allylic alcohols. • AAOs are potential biocatalysts for the production of high-value-added bio-based chemicals.


Subject(s)
Alcohol Oxidoreductases , Hydrogen Peroxide , Alcohol Oxidoreductases/genetics , Alcohols , Fungi/genetics , Lignin , Peroxidase , Peroxidases
15.
Chem Commun (Camb) ; 57(4): 520-523, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33331834

ABSTRACT

Saturation mutagenesis at seven first-sphere residues of the cytochrome P450 monooxygenase 154E1 (CYP154E1) from Thermobifida fusca YX was applied to construct a variant with only three substitutions that enabled the effective two-step synthesis of the potential antidepressant (2R,6R)-hydroxynorketamine. A recombinant E. coli whole-cell system was essential for GC/MS based medium-throughput screening and at the same time facilitated the oxidation of the substrate (R)-ketamine at a higher scale for product isolation and subsequent NMR analysis.


Subject(s)
Antidepressive Agents/chemical synthesis , Cytochrome P-450 Enzyme System/chemistry , Ketamine/analogs & derivatives , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Evolution, Molecular , Hydroxylation , Ketamine/chemical synthesis , Ketamine/chemistry , Ketamine/metabolism , Molecular Docking Simulation , Mutation , Oxidation-Reduction , Protein Binding , Streptomyces coelicolor/enzymology , Thermobifida/enzymology
16.
Chembiochem ; 22(8): 1470-1479, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33332702

ABSTRACT

Laccases are multi-copper oxidases that catalyze the oxidation of various electron-rich substrates with concomitant reduction of molecular oxygen to water. The multi-copper oxidase/laccase CueO of Escherichia coli is responsible for the oxidation of Cu+ to the less harmful Cu2+ in the periplasm. CueO has a relatively broad substrate spectrum as laccase, and its activity is enhanced by copper excess. The aim of this study was to trigger CueO activity in vivo for the use in biocatalysis. The addition of 5 mM CuSO4 was proven effective in triggering CueO activity at need with minor toxic effects on E. coli cells. Cu-treated E. coli cells were able to convert several phenolic compounds to the corresponding dimers. Finally, the endogenous CueO activity was applied to a four-step cascade, in which coniferyl alcohol was converted to the valuable plant lignan (-)-matairesinol.


Subject(s)
Copper/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Lignans/biosynthesis , Oxidoreductases/metabolism , Biocatalysis , Copper/chemistry , Escherichia coli Proteins/chemistry , Furans/chemistry , Lignans/chemistry , Molecular Structure , Oxidoreductases/chemistry
17.
ACS Synth Biol ; 9(11): 3091-3103, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33095000

ABSTRACT

Lignans are plant secondary metabolites with a wide range of reported health-promoting bioactivities. Traditional routes toward these natural products involve, among others, the extraction from plant sources and chemical synthesis. However, the availability of the sources and the complex chemical structures of lignans often limit the feasibility of these approaches. In this work, we introduce a newly assembled biosynthetic route in E. coli for the efficient conversion of the common higher-lignan precursor (+)-pinoresinol to the noncommercially available (-)-pluviatolide via three intermediates. (-)-Pluviatolide is considered a crossroad compound in lignan biosynthesis, because the methylenedioxy bridge in its structure, resulting from the oxidation of (-)-matairesinol, channels the biosynthetic pathway toward the microtubule depolymerizer (-)-podophyllotoxin. This oxidation reaction is catalyzed with high regio- and enantioselectivity by a cytochrome P450 monooxygenase from Sinopodophyllum hexandrum (CYP719A23), which was expressed and optimized regarding redox partners in E. coli. Pinoresinol-lariciresinol reductase from Forsythia intermedia (FiPLR), secoisolariciresinol dehydrogenase from Podophyllum pleianthum (PpSDH), and CYP719A23 were coexpressed together with a suitable NADPH-dependent reductase to ensure P450 activity, allowing for four sequential biotransformations without intermediate isolation. By using an E. coli strain coexpressing the enzymes originating from four plants, (+)-pinoresinol was efficiently converted, allowing the isolation of enantiopure (-)-pluviatolide at a concentration of 137 mg/L (ee ≥99% with 76% isolated yield).


Subject(s)
4-Butyrolactone/analogs & derivatives , Escherichia coli/metabolism , Podophyllotoxin/metabolism , 4-Butyrolactone/metabolism , Berberidaceae/metabolism , Biotransformation/physiology , Cytochrome P-450 Enzyme System/metabolism , Forsythia/metabolism , Furans/metabolism , Lignans/metabolism , NADP/metabolism , Oxidation-Reduction , Podophyllum peltatum/metabolism
18.
Appl Microbiol Biotechnol ; 104(21): 9205-9218, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32949280

ABSTRACT

The fungal secretome comprises various oxidative enzymes participating in the degradation of lignocellulosic biomass as a central step in carbon recycling. Among the secreted enzymes, aryl-alcohol oxidases (AAOs) are of interest for biotechnological applications including production of bio-based precursors for plastics, bioactive compounds, and flavors and fragrances. Aryl-alcohol oxidase 2 (PeAAO2) from the fungus Pleurotus eryngii was heterologously expressed and secreted at one of the highest yields reported so far of 315 mg/l using the methylotrophic yeast Pichia pastoris (recently reclassified as Komagataella phaffii). The glycosylated PeAAO2 exhibited a high stability in a broad pH range between pH 3.0 and 9.0 and high thermal stability up to 55 °C. Substrate screening with 41 compounds revealed that PeAAO2 oxidized typical AAO substrates like p-anisyl alcohol, veratryl alcohol, and trans,trans-2,4-hexadienol with up to 8-fold higher activity than benzyl alcohol. Several compounds not yet reported as substrates for AAOs were oxidized by PeAAO2 as well. Among them, cumic alcohol and piperonyl alcohol were oxidized to cuminaldehyde and piperonal with high catalytic efficiencies of 84.1 and 600.2 mM-1 s-1, respectively. While the fragrance and flavor compound piperonal also serves as starting material for agrochemical and pharmaceutical building blocks, various positive health effects have been attributed to cuminaldehyde including anticancer, antidiabetic, and neuroprotective effects. PeAAO2 is thus a promising biocatalyst for biotechnological applications. KEY POINTS: • Aryl-alcohol oxidase PeAAO2 from P. eryngii was produced in P. pastoris at 315 mg/l. • Purified enzyme exhibited stability over a broad pH and temperature range. • Oxidation products cuminaldehyde and piperonal are of biotechnological interest. Graphical abstract.


Subject(s)
Pleurotus , Alcohol Oxidoreductases , Odorants , Pichia/genetics , Pleurotus/genetics , Saccharomycetales
19.
ChemistryOpen ; 8(11): 1337-1344, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31692915

ABSTRACT

CgL1 laccase from Corynebacterium glutamicum was encapsulated into the metal-organic framework (MOF) ZIF-8 which was synthesized in a rapid enzyme friendly aqueous synthesis, the fastest in situ encapsulation of laccases reported to date. The obtained enzyme/MOF, i. e. laccase@ZIF-8 composite showed enhanced thermal (up to 70 °C) and chemical (N,N-dimethylformamide) stability, resulting in a stable heterogenous catalyst, suitable for high temperature reactions in organic solvents. Furthermore, the defined structure of ZIF-8 produced a size selective substrate specificity, so that substrates larger than the pore size were not accepted. Thereby, 2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) was used to verify that the enzyme is immobilized inside the MOF versus the outside surface. The enzyme@MOF composite was analyzed by atomic absorption spectroscopy (ASS) to precisely determine the enzyme loading to 2.1 wt%.

20.
J Inorg Biochem ; 201: 110843, 2019 12.
Article in English | MEDLINE | ID: mdl-31536948

ABSTRACT

Laccases are multicopper enzymes that catalyze oxidation of electron-rich substrates coupled to reduction of molecular oxygen to water. Since the Type 1 copper (T1 Cu) is the site where electrons are withdrawn from the substrate, it is assumed that the reduction potential of this copper correlates with enzyme activity. Herein, we studied the correlation of the T1 Cu reduction potential and the enzymatic activity of the small two-domain laccase Ssl1 from Streptomyces sviceus. For a systematic approach, we aimed to minimize any effects other than the reduction potential difference. To this end, we constructed a series of Ssl1 mutants with reduction potentials varying from <290 to 560 mV. Along with the hydrophobicity of the axial ligand of the T1 Cu also structural changes in the substrate binding site and additional hydrogen bonding increased the reduction potential. Enzyme activity experiments demonstrated that the T1 Cu reduction potential has a different effect on oxidation of different substrates. Whereas there was no obvious correlation between the T1 Cu reduction potential and kinetic parameters for the oxidation of syringaldazine (with a reduction potential of 390 mV), a good correlation was observed between the T1 Cu reduction potential and the conversion of substituted phenols with reduction potentials between 660 and 820 mV. This correlation was pronounced for the Ssl1 variants with reduction potentials above 470 mV, which demonstrated increased activities also during the oxidation of two dyes, alizarin red S and indigo carmine.


Subject(s)
Bacterial Proteins/chemistry , Catalytic Domain , Laccase/chemistry , Mutation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Copper/chemistry , Laccase/genetics , Laccase/metabolism , Oxidation-Reduction , Phenols/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...